Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ezio Peri is active.

Publication


Featured researches published by Ezio Peri.


The Journal of Experimental Biology | 2004

Insect oviposition induces volatile emission in herbaceous plants that attracts egg parasitoids

Stefano Colazza; Alessandro Fucarino; Ezio Peri; Gianandrea Salerno; Eric Conti; Ferdinando Bin

SUMMARY The egg parasitoid Trissolcus basalis (Wollaston) (Hymenoptera: Scelionidae) responded to synomones emitted by leguminous plants induced by feeding and oviposition activity of the bug Nezara viridula (L.) (Heteroptera: Pentatomidae). This was shown by laboratory bioassays using a Y-tube olfactometer. Broad bean leaves (Vicia faba L.) damaged by feeding activity of N. viridula and on which host egg mass had been laid produced synomones that attracted T. basalis. By contrast, undamaged leaves or feeding-damaged leaves without eggs did not attract wasp females. French bean plants (Phaseolus vulgaris L.) also emitted attractive synomones when they were damaged by host feeding and carrying egg masses. Thus, release of feeding- and oviposition-induced synomones does not seem to be plant-specific. Synomone production was shown to be a systemically induced plant physiological response to feeding damage and oviposition. Also, parts of the plant that were left undamaged and did not carry host eggs emitted attractive synomones when other parts of the plant were damaged by feeding and carrying eggs. Furthermore, wasps were not attracted by N. viridula egg masses offered alone or combined with damaged broad bean leaves. Thus, the attractiveness of feeding-damaged leaves carrying eggs is due to induction by feeding and oviposition rather than due to a combined effect of attractive volatiles released from eggs and damaged leaves. The production of synomones was influenced by the age of the host egg mass, because feeding-damaged leaves bearing egg masses attracted the parasitoid until the eggs were ∼72-96 h old but not once the larvae had hatched from the eggs (∼120 h old). These results show that annual plants are able to produce synomones as a consequence of feeding and egg mass oviposition by a sucking insect.


Journal of Chemical Ecology | 2007

The Egg Parasitoid Trissolcus basalis uses n-nonadecane, a Cuticular Hydrocarbon from its Stink Bug Host Nezara viridula, to Discriminate Between Female and Male Hosts

Stefano Colazza; Gloria Aquila; Claudio De Pasquale; Ezio Peri; Jocelyn G. Millar

Contact kairomones from adult southern green stink bugs, Nezara viridula (L.) (Heteroptera: Pentatomidae) that elicit foraging behavior of the egg parasitoid Trissolcus basalis (Wollaston) were investigated in laboratory experiments. Chemical residues from tarsi and scutella of N. viridula induced foraging by gravid female T. basalis. Residues from body parts of female N. viridula elicited stronger responses than those from the corresponding body parts of males. Deproteinized tarsi still elicited searching responses from wasps, indicating that the kairomone was not proteinaceous. Hexane extracts of host cuticular lipids induced searching responses from T. basalis, with a strong preference for extracts from female hosts. Extracts consisted primarily of linear alkanes from nC19 to nC34, with quantitative and qualitative differences between the sexes. Extracts of female N. viridula contained more nC23, nC24, and nC25 than the corresponding extracts from males, whereas nC19 was detected only in extracts from males. Direct-contact solid phase microextraction (DC-SPME) of N. viridula cuticle and of residues left by adult bugs walking on a glass plate confirmed gender-specific differences in nC19. Trissolcus basalis females responded weakly to a reconstructed blend of the straight-chain hydrocarbons, suggesting that minor components other than linear alkanes must be part of the kairomone. Addition of nC19 to hexane extracts of female N. viridula significantly reduced the wasps’ arrestment responses, similar to wasps’ responses to hexane extracts of male hosts. Overall, our results suggest that a contact kairomone that elicits foraging by T. basalis females is present in the cuticular lipids of N. viridula, and that the presence or absence of nC19 allows T. basalis females to distinguish between residues left by male or female hosts. The ecological significance of these results in the host location behavior of scelionid egg parasitoids is discussed.


Pest Management Science | 2011

Responses of Rhynchophorus ferrugineus adults to selected synthetic palm esters: electroantennographic studies and trap catches in an urban environment

Salvatore Guarino; Paolo Lo Bue; Ezio Peri; Stefano Colazza

BACKGROUND The red palm weevil (RPW), Rhynchophorus ferrugineus Olivier, accidentally introduced into the European countries facing the Mediterranean basin, is becoming the most serious pest for ornamental palms in the urban environment. In the present work, tests were conducted on the electroantennogram (EAG) and behavioural responses of RPW adults to five selected synthetic palm esters, ethyl propionate, ethyl butyrate, ethyl isobutyrate, ethyl lactate and ethyl acetate, to assess the application of a mass trapping technique in an urban environment. RESULTS In the laboratory, EAG bioassays on RPW adults with the synthetic palm esters showed: (1) positive dose-dependent responses; (2) differences among the treatments; (3) a greater response to ethyl propionate; (4) a higher sensitivity of female antennae compared with male antennae. In the urban environment, RPW behavioural responses, evaluated over six biweekly observations on pheromone- and molasses- baited traps, showed that more adults were caught by traps supplemented with ethyl propionate and ethyl acetate than by traps supplemented with only ethyl propionate. Similar catches were recorded in the traps supplemented with ethyl propionate or ethyl acetate. CONCLUSION This study supports the application of the mass trapping implemented with synthetic palm esters as a potential tool for the management of RPW populations to protect ornamental palms in urban environments.


Naturwissenschaften | 2009

The response of Trissolcus basalis to footprint contact kairomones from Nezara viridula females is mediated by leaf epicuticular waxes.

Stefano Colazza; Mauro Lo Bue; Daniela Lo Giudice; Ezio Peri

Chemical footprints left behind by true bugs are perceived as contact kairomones by scelionid egg parasitoids. Female wasps encountering a contaminated artificial substrate display a characteristic arrestment posture, holding the body motionless and antennating the surface. In the system Nezara viridula (L.) and its egg parasitoid Trissolcus basalis (Wollaston), previous studies have shown that the kairomone mediating such behavior is part of N. viridula’s cuticular hydrocarbons (CHC) and furthermore that the wasp’s ability to discriminate host male and female footprints is mainly based on the presence/absence of nonadecane (nC19). In this study, the effect of epicuticular waxes of leaves of broad bean, Vicia faba, on wasp responses to footprints of N. viridula females were investigated. Approximately 20% of T. basalis females displayed an arrestment posture when released on the adaxial leaf surfaces of broad bean plants with intact wax layer and without host chemical contamination; whereas ∼70% of wasps displayed the arrestment posture when intact leaves were contaminated by host female footprints. Adaxial leaf surfaces of broad bean plants dewaxed with an aqueous solution of gum arabic and afterwards contaminated by N. viridula females induced arrestment responses in about 10% of female wasps; the same percentage of arrestment (10%) was observed when the wasps were released on leaves contaminated by host females and subsequently dewaxed. The side of the polymer film that was appressed to the leaf surface, peeled from the contaminated leaves, induced an arrestment posture in about 95% of observed wasps. Scanning electron microscopy (SEM) revealed that the epicuticular waxes occurred as a film densely crystallized as irregularly shaped platelets with spherical granules randomly distributed. These findings demonstrated that epicuticular waxes of broad bean leaves can mediate the foraging behavior of T. basalis females by absorbing contact kairomones of the host.


Journal of Chemical Ecology | 2010

Influence of feeding and oviposition by phytophagous pentatomids on photosynthesis of herbaceous plants.

Violeta Velikova; Gianandrea Salerno; Francesca Frati; Ezio Peri; Eric Conti; Stefano Colazza; Francesco Loreto

Feeding by herbivorous insects may change photosynthetic activity of host plants. We studied how feeding and oviposition by herbivorous stink bugs, Murgantia histrionica and Nezara viridula (Heteroptera: Pentatomidae), affect photosynthetic parameters of Brassica oleracea (savoy cabbage) and Phaseolus vulgaris (French bean). First, we measured photosynthetic gas exchange, chlorophyll fluorescence imaging, and emission of induced volatile organic compounds (VOC) immediately after feeding and during a post-feeding period. Photosynthesis decreased rapidly and substantially in B. oleracea and P. vulgaris infested by feeding bugs. Stomatal conductance did not decrease proportionally with photosynthesis; instead, inhibition of photosynthesis likely was due to a reduced diffusion of CO2 in the mesophyll. We also measured the impact of oviposition per se and oviposition associated with feeding on photosynthetic parameters. A surprisingly large inhibition of photosynthesis was detected in cabbage leaves in response to oviposition by M. histrionica, even when oviposition was not associated with feeding activity. High resolution chlorophyll fluorescence imaging revealed that the damage to photochemistry caused by feeding and oviposition was restricted to the attacked areas. By contrast, the photochemical yield increased temporarily in the unaffected areas of the attacked leaves, indicating the onset of a compensatory response. Measurement of volatile organic compounds (VOC) revealed that feeding-damaged plants did not emit detectable amounts of VOC, indicating cellular damage (methanol and green leaf volatiles). However, feeding by M. histrionica induced emission of mono- and sesquiterpenes in savoy cabbage leaves. The different time-course of the induction of these two classes of terpenes may reflect the induction of two different biosynthetic pathways and indicate different roles of these terpenoids in tritrophic interactions.


Biocontrol | 2014

Chemo-orientation responses in hymenopteran parasitoids induced by substrate-borne semiochemicals

Stefano Colazza; Antonino Cusumano; Daniela Lo Giudice; Ezio Peri

Hymenopteran parasitoids can utilize substrate-borne semiochemicals released by conspecifics or by their hosts, increasing the likelihood of successful mating and host location. According to the literature, two substrate-borne chemo-orientation patterns can occur: (1) biased random searching, a non-directional reaction toward the chemicals (kinesis), and (2) trail-following searching, a directional response toward the source emitting the chemical compounds (taxis). These two different strategies can be adopted by parasitoids to locate hosts and mates. In host location, random searching is induced by allelochemicals indirectly associated with the host, whereas trail-following behavior is induced by allelochemicals directly emitted by the target organism. In mate finding, sex pheromones emitted by conspecifics can induce either the random searching or the trail-following behavior, although the spatial distribution of virgin conspecifics could be an important factor driving the evolution of substrate-borne chemo-orientation patterns. The chemical nature of substrate-borne semiochemicals has not yet been fully elucidated. Most studies have shown that crude extracts are biologically active for eliciting parasitoid arrestment response, but few studies have clearly characterized their chemical nature. However, experimental evidence indicates that cuticular lipids located in the external layer of insects’ bodies play a role in parasitoid–parasitoid and host–parasitoid communication. The ecological role of parasitoid chemo-orientation in host and mate location is discussed from a biological control perspective.


Biocontrol | 2012

Interspecific extrinsic and intrinsic competitive interactions in egg parasitoids

Antonino Cusumano; Ezio Peri; S. Bradleigh Vinson; Stefano Colazza

Interspecific competitive interactions can occur either between adult parasitoids searching/exploiting hosts (extrinsic competition) or between parasitoid larvae developing within the same host (intrinsic competition). Understanding how interspecific competition between parasitoids can affect pest suppression is important for improving biological pest control. The purpose of this work was to review both extrinsic and intrinsic competition between egg parasitoid species. These are organisms that are often candidates for biological control programs due to their ability to kill the pest before the crop feeding stage. We first reviewed the literature about interspecific competitive abilities of adult parasitoids in terms of comparative host location strategies highlighting which ecological and behavioral factors are likely to shape extrinsic competition. Then we focused on the interspecific competitive interactions between immatures developing within the same host taking into account which factors play a key role in the outcome of intrinsic competition. Finally we conclude stressing on the need to elucidate the overall competitive interaction that parasitoid species may experience in the field in order to enhance biological control success.


Archive | 2009

Host Searching by Egg Parasitoids: Exploitation of Host Chemical Cues

Stefano Colazza; Ezio Peri; Gianandrea Salerno; Eric Conti

Insect parasitoids are considered “keystone species” in many ecosystems in terms of biodiversity, ecological impact and economic importance (Vinson 1985, LaSalle and Gauld 1993, Hawkins et al. 1999). In the last decades, several reviews have been published on the relationships among plants, hosts and parasitoids, which reflect a strong interest in these insects both as models for behavioral ecologists and as important organisms for classical and applied biological control programs (Hawkins et al. 1999, Vet 1999, Bale et al. 2008). The majority of these studies have considered the larval parasitoid s, besides the extensive use of egg parasitoids in biological control (Hawkins et al. 1999). Insect eggs can be parasitized by about 15 families of Hymenoptera parasitoids, among which several may have potential for biological control application, such as Aphelinidae, Encyrtidae, Eulophidae, Eupelmidae, Mymaridae, Platygastridae, Pteromalidae, Scelionidae, Tetracampidae and Trichogrammatidae (Bin 1994). Three families, Mymaridae, Scelionidae and Trichogrammatidae are exclusively composed of egg parasitoids, whereas the other families are represented by species developing in different host stages, and they also include egg-larval parasitoids, egg-prepupal parasitoids and egg predators (Bin 1994, Vinson 1994). In this chapter we will focus only on egg parasitoids. Successful parasitism of herbivores by insect parasitoids arises through several phases during host searching , which lead wasp females into the close vicinity/contact of their hosts (Vinson 1998). During the host location process, females encounter and explore a great variety of stimuli, among which the chemical cues , named semiochemicals or infochemicals , play a relevant role (Godfray 1994, Vet and Dicke 1992, Vinson 1998). Female parasitoids are under selection pressure to efficiently invest their limited time on the location and exploitation of host derived stimuli, so that the appropriateness and usability of semiochemicals could be influenced by their reliability in indicating host presence and by the degree to which stimuli can be detected, as explained by the reliability-detectability theory (Vet and Dicke 1992). In developing this theory, it was argued that the level of reliability and detectability of a particular stimulus is inversely correlated, e.g. cues from the hosts may be highly reliable, but are less detectable compared to volatiles from plants, which have a much larger biomass. To get through the reliability-detectability dilemma, wasp females can adopt three different strategies based on the exploitation of either: (1) cues originated from stages different from the one attacked (infochemical detour); (2) cues originated from the interaction of the plant and the herbivore (host-induced synomones); or (3) reliable but poorly detectable cues which were linked, through associative learning, with more detectable but unreliable cues (Vet and Dicke 1992).


Communicative & Integrative Biology | 2010

Plant surfaces of vegetable crops mediate interactions between chemical footprints of true bugs and their egg parasitoids

Daniela Lo Giudice; Ezio Peri; Mauro Lo Bue; Stefano Colazza

During the host location process, egg parasitoids can eavesdrop on chemical cues released from immature and adult hosts. These indirect host-related cues are highly detectable, but of low reliability because they lead egg parasitoid females to an area where oviposition is likely to occur rather then providing wasps with direct information on the presence of eggs and their location. In the host-parasitoid associations between true bugs and their scelionid egg parasitoids, female wasps perceive the chemical residues left by host adults walking on substrates as contact kairomones, displaying a characteristic arrestment posture. In this study, we demonstrated that epicuticular waxes of leaves of two vegetable crops, broad bean, Vicia faba, and collard greens, Brassica oleracea, mediate the foraging behavior of Trissolcus basalis (Wollaston) by adsorbing contact kairomones from adults of Nezara viridula (L.). Trissolcus basalis females showed no response when released on the adaxial leaf surface of broad bean or collard green plants with intact cuticular wax layers that had not been exposed to bugs, whereas wasps displayed the arrestment posture when intact leaves were contaminated by chemical residues from host females. Adaxial leaf surfaces that were dewaxed with an aqueous solution of gum arabic and afterwards contaminated by N. viridula females elicited no arrestment responses from wasp females. Similarly, leaves contaminated by host females and subsequently dewaxed did not elicit responses from female wasps. These findings reveal the important role of plant waxes in N. viridula - T. basalis semiochemical communication.


The Journal of Experimental Biology | 2009

A finely tuned strategy adopted by an egg parasitoid to exploit chemical traces from host adults.

G. Salerno; F. Frati; Eric Conti; C. De Pasquale; Ezio Peri; Stefano Colazza

SUMMARY Scelionid egg parasitoids can obtain reliable information on the presence of host eggs by discriminating host gender on the basis of chemical footprints of their co-evolved hosts, with a strong preference for the footprint left by host females. Based on the concept of dietary specialization and infochemical use in natural enemies, it could be predicted that host gender discrimination in specialist species belonging to the genus Trissolcus is further tuned to specific cues from distinctive chemical traces left by host females as a consequence of copulation and/or oviposition. To test this hypothesis we used the system Murgantia histrionica – Trissolcus brochymenae. Our results showed that the females of the egg parasitoid search intensely on chemical traces left on the substrate by host females that had mated but had not yet laid host eggs compared with the chemical traces left by virgin or parous host females. This preference for mated females that had not yet laid host eggs was strictly related to the transfer of sperm and associated substances from males to females during copulation. The compounds that mediated the arrestment response of T. brochymenae females are part of the host cuticle, and those that play a role as gender-specific cues seemed to be present in the legs of the host adult. This result represents an interesting new piece of information regarding the exploitation of indirect host-related cues by egg parasitoids. It reveals the existence of a finely tuned strategy that allows the parasitoid to find newly laid host eggs, as chemical traces left by mated host females that have not yet laid eggs are strongly correlated with the moment of oviposition.

Collaboration


Dive into the Ezio Peri's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Lo Bue

University of Palermo

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge