Daniela Lo Giudice
University of Palermo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Daniela Lo Giudice.
Naturwissenschaften | 2009
Stefano Colazza; Mauro Lo Bue; Daniela Lo Giudice; Ezio Peri
Chemical footprints left behind by true bugs are perceived as contact kairomones by scelionid egg parasitoids. Female wasps encountering a contaminated artificial substrate display a characteristic arrestment posture, holding the body motionless and antennating the surface. In the system Nezara viridula (L.) and its egg parasitoid Trissolcus basalis (Wollaston), previous studies have shown that the kairomone mediating such behavior is part of N. viridula’s cuticular hydrocarbons (CHC) and furthermore that the wasp’s ability to discriminate host male and female footprints is mainly based on the presence/absence of nonadecane (nC19). In this study, the effect of epicuticular waxes of leaves of broad bean, Vicia faba, on wasp responses to footprints of N. viridula females were investigated. Approximately 20% of T. basalis females displayed an arrestment posture when released on the adaxial leaf surfaces of broad bean plants with intact wax layer and without host chemical contamination; whereas ∼70% of wasps displayed the arrestment posture when intact leaves were contaminated by host female footprints. Adaxial leaf surfaces of broad bean plants dewaxed with an aqueous solution of gum arabic and afterwards contaminated by N. viridula females induced arrestment responses in about 10% of female wasps; the same percentage of arrestment (10%) was observed when the wasps were released on leaves contaminated by host females and subsequently dewaxed. The side of the polymer film that was appressed to the leaf surface, peeled from the contaminated leaves, induced an arrestment posture in about 95% of observed wasps. Scanning electron microscopy (SEM) revealed that the epicuticular waxes occurred as a film densely crystallized as irregularly shaped platelets with spherical granules randomly distributed. These findings demonstrated that epicuticular waxes of broad bean leaves can mediate the foraging behavior of T. basalis females by absorbing contact kairomones of the host.
Biocontrol | 2014
Stefano Colazza; Antonino Cusumano; Daniela Lo Giudice; Ezio Peri
Hymenopteran parasitoids can utilize substrate-borne semiochemicals released by conspecifics or by their hosts, increasing the likelihood of successful mating and host location. According to the literature, two substrate-borne chemo-orientation patterns can occur: (1) biased random searching, a non-directional reaction toward the chemicals (kinesis), and (2) trail-following searching, a directional response toward the source emitting the chemical compounds (taxis). These two different strategies can be adopted by parasitoids to locate hosts and mates. In host location, random searching is induced by allelochemicals indirectly associated with the host, whereas trail-following behavior is induced by allelochemicals directly emitted by the target organism. In mate finding, sex pheromones emitted by conspecifics can induce either the random searching or the trail-following behavior, although the spatial distribution of virgin conspecifics could be an important factor driving the evolution of substrate-borne chemo-orientation patterns. The chemical nature of substrate-borne semiochemicals has not yet been fully elucidated. Most studies have shown that crude extracts are biologically active for eliciting parasitoid arrestment response, but few studies have clearly characterized their chemical nature. However, experimental evidence indicates that cuticular lipids located in the external layer of insects’ bodies play a role in parasitoid–parasitoid and host–parasitoid communication. The ecological role of parasitoid chemo-orientation in host and mate location is discussed from a biological control perspective.
Communicative & Integrative Biology | 2010
Daniela Lo Giudice; Ezio Peri; Mauro Lo Bue; Stefano Colazza
During the host location process, egg parasitoids can eavesdrop on chemical cues released from immature and adult hosts. These indirect host-related cues are highly detectable, but of low reliability because they lead egg parasitoid females to an area where oviposition is likely to occur rather then providing wasps with direct information on the presence of eggs and their location. In the host-parasitoid associations between true bugs and their scelionid egg parasitoids, female wasps perceive the chemical residues left by host adults walking on substrates as contact kairomones, displaying a characteristic arrestment posture. In this study, we demonstrated that epicuticular waxes of leaves of two vegetable crops, broad bean, Vicia faba, and collard greens, Brassica oleracea, mediate the foraging behavior of Trissolcus basalis (Wollaston) by adsorbing contact kairomones from adults of Nezara viridula (L.). Trissolcus basalis females showed no response when released on the adaxial leaf surface of broad bean or collard green plants with intact cuticular wax layers that had not been exposed to bugs, whereas wasps displayed the arrestment posture when intact leaves were contaminated by chemical residues from host females. Adaxial leaf surfaces that were dewaxed with an aqueous solution of gum arabic and afterwards contaminated by N. viridula females elicited no arrestment responses from wasp females. Similarly, leaves contaminated by host females and subsequently dewaxed did not elicit responses from female wasps. These findings reveal the important role of plant waxes in N. viridula - T. basalis semiochemical communication.
Journal of Chemical Ecology | 2011
Daniela Lo Giudice; Michael Riedel; Michael Rostás; Ezio Peri; Stefano Colazza
Egg parasitoids are able to find their hosts by exploiting their chemical footprints as host location cues. In nature, the apolar epicuticular wax layer of plants that consists of several classes of hydrocarbons serves as the substrate that retains these contact kairomones. However, experiments on chemical footprints generally have used filter paper as substrate to study insect behavior. Here, we explored the ability of Trissolcus basalis (Scelionidae) females to discriminate between footprint cues left by male and female Nezara viridula (Pentatomidae) on leaves of their host plant Brassica oleracea (broccoli). Furthermore, we analyzed the chemical composition of the outermost wax layer of broccoli leaves to evaluate the degree of overlap in insect and plant cuticular hydrocarbons that could lead to masking effects in the detection of footprint cues. Our results showed that B. oleracea epicuticular wax retains the chemical footprints of adult bugs and allows T. basalis females to differentiate hosts of different sex. Traces of female bugs elicited more extensive searching behavior in egg parasitoids than traces of males. The application of n-nonadecane, a compound specific to male N. viridula, on the tarsi of female bugs prevented parasitoid females from distinguishing between host male and host female footprints. Analyses of B. oleracea leaves revealed that epicuticular waxes were mainly composed of linear alkanes, ketones, and secondary alcohols. Alkanes were dominated by n-nonacosane (nC29) and n-hentriacontane (nC31), while male-specific n-nonadecane (nC19) was absent. The ecological significance of these results for parasitoid host location behavior is discussed.
Entomologia Experimentalis Et Applicata | 2013
Apostolos Kapranas; Daniela Lo Giudice; Ezio Peri; Jocelyn G. Millar; Stefano Colazza
Biological Control | 2011
Apostolos Kapranas; Daniela Lo Giudice; Robert F. Luck; Joseph G. Morse
Archive | 2009
Stefano Colazza; Daniela Lo Giudice; Ezio Peri
Archive | 2009
Stefano Colazza; Daniela Lo Giudice; Ezio Peri; Apostolos Kapranas; Js Mcelfresh; Jg Millar; Rf Luck
Archive | 2009
Stefano Colazza; Daniela Lo Giudice; Ezio Peri; Mauro Lo Bue
Archive | 2009
Stefano Colazza; Daniela Lo Giudice; Ezio Peri; Mauro Lo Bue; Eric Conti; Gianandrea Salerno; Francesca Frati; Ferdinando Bin