F. A. Jenet
University of Texas at Brownsville
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by F. A. Jenet.
Science | 2009
Anne M. Archibald; I. H. Stairs; Scott M. Ransom; Victoria M. Kaspi; Vladislav Kondratiev; D. R. Lorimer; M. A. McLaughlin; Jason Boyles; J. W. T. Hessels; Ryan S. Lynch; Joeri van Leeuwen; Mallory Strider Ellison Roberts; F. A. Jenet; D. J. Champion; R. Rosen; B. N. Barlow; B. H. Dunlap; Ronald A. Remillard
From X-ray Binary to Pulsar Pulsars with millisecond rotational periods are thought to originate from neutron stars in low-mass x-ray binaries that had their spin frequencies increased by long-lasting mass transfer from their companion stars. Using data from a radio pulsar survey, Archibald et al. (p. 1411, published online 21 May; see the Perspective by Kramer) found a neutron star in a low-mass X-ray binary that is in the process of turning into a radio millisecond pulsar. The system, which consists of a solar-like star and a 1.69-millisecond radio pulsar, has gone through a recent accretion phase, characteristic of low-mass X-ray binaries, but it shows no accretion disk anymore, confirming the evolutionary connection between millisecond radio pulsars and low-mass X-ray binaries. Radio observations reveal a system undergoing the transition from a low-mass x-ray binary star to a millisecond radio pulsar. Radio pulsars with millisecond spin periods are thought to have been spun up by the transfer of matter and angular momentum from a low-mass companion star during an x-ray–emitting phase. The spin periods of the neutron stars in several such low-mass x-ray binary (LMXB) systems have been shown to be in the millisecond regime, but no radio pulsations have been detected. Here we report on detection and follow-up observations of a nearby radio millisecond pulsar (MSP) in a circular binary orbit with an optically identified companion star. Optical observations indicate that an accretion disk was present in this system within the past decade. Our optical data show no evidence that one exists today, suggesting that the radio MSP has turned on after a recent LMXB phase.
Classical and Quantum Gravity | 2010
G. Hobbs; Anne M. Archibald; Zaven Arzoumanian; Donald C. Backer; M. Bailes; N. D. R. Bhat; M Burgay; S. Burke-Spolaor; D. J. Champion; I. Cognard; W. A. Coles; J. M. Cordes; Paul Demorest; G. Desvignes; R. D. Ferdman; Lee Samuel Finn; P. C. C. Freire; M. E. Gonzalez; J. W. T. Hessels; A. W. Hotan; G. H. Janssen; F. A. Jenet; A. Jessner; C. A. Jordan; V. M. Kaspi; M. Kramer; V. I. Kondratiev; Joseph Lazio; K. Lazaridis; K. J. Lee
The International Pulsar Timing Array project combines observations of pulsars from both northern and southern hemisphere observatories with the main aim of detecting ultra-low frequency (similar to 10(-9)-10(-8) Hz) gravitational waves. Here we introduce the project, review the methods used to search for gravitational waves emitted from coalescing supermassive binary black-hole systems in the centres of merging galaxies and discuss the status of the project.
The Astrophysical Journal | 2014
L. G. Spitler; J. M. Cordes; J. W. T. Hessels; D. R. Lorimer; M. A. McLaughlin; S. Chatterjee; F. Crawford; J. S. Deneva; Victoria M. Kaspi; R. S. Wharton; B. Allen; S. Bogdanov; A. Brazier; F. Camilo; P. C. C. Freire; F. A. Jenet; C. Karako-Argaman; B. Knispel; P. Lazarus; K. J. Lee; J. van Leeuwen; Ryan S. Lynch; Scott M. Ransom; P. Scholz; X. Siemens; I. H. Stairs; K. Stovall; J. K. Swiggum; A. Venkataraman; W. W. Zhu
Recent work has exploited pulsar survey data to identify temporally isolated, millisecond-duration radio bursts with large dispersion measures (DMs). These bursts have been interpreted as arising from a population of extragalactic sources, in which case they would provide unprecedented opportunities for probing the intergalactic medium; they may also be linked to new source classes. Until now, however, all so-called fast radio bursts (FRBs) have been detected with the Parkes radio telescope and its 13-beam receiver, casting some concern about the astrophysical nature of these signals. Here we present FRB 121102, the first FRB discovery from a geographic location other than Parkes. FRB 121102 was found in the Galactic anti-center region in the 1.4?GHz Pulsar Arecibo L-band Feed Array (ALFA) survey with the Arecibo Observatory with a DM = 557.4 ? 2.0 pc cm?3, pulse width of 3.0 ? 0.5 ms, and no evidence of interstellar scattering. The observed delay of the signal arrival time with frequency agrees precisely with the expectation of dispersion through an ionized medium. Despite its low Galactic latitude (b = ?0.?2), the burst has three times the maximum Galactic DM expected along this particular line of sight, suggesting an extragalactic origin. A peculiar aspect of the signal is an inverted spectrum; we interpret this as a consequence of being detected in a sidelobe of the ALFA receiver. FRB 121102s brightness, duration, and the inferred event rate are all consistent with the properties of the previously detected Parkes bursts.
The Astrophysical Journal | 2013
Paul Demorest; R. D. Ferdman; M. E. Gonzalez; David J. Nice; Scott M. Ransom; I. H. Stairs; Zaven Arzoumanian; A. Brazier; S. Burke-Spolaor; S. J. Chamberlin; J. M. Cordes; J. A. Ellis; L. S. Finn; P. C. C. Freire; S. Giampanis; F. A. Jenet; V. M. Kaspi; Joseph Lazio; Andrea N. Lommen; M. A. McLaughlin; Nipuni Palliyaguru; Delphine Perrodin; R. M. Shannon; X. Siemens; Daniel R. Stinebring; J. K. Swiggum; W. W. Zhu
We present an analysis of high-precision pulsar timing data taken as part of the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) project. We have observed 17 pulsars for a span of roughly five years using the Green Bank and Arecibo radio telescopes. We analyze these data using standard pulsar timing models, with the addition of time-variable dispersion measure and frequency-variable pulse shape terms. Sub-microsecond timing residuals are obtained in nearly all cases, and the best rms timing residuals in this set are ~30-50 ns. We present methods for analyzing post-fit timing residuals for the presence of a gravitational wave signal with a specified spectral shape. These optimally take into account the timing fluctuation power removed by the model fit, and can be applied to either data from a single pulsar, or to a set of pulsars to detect a correlated signal. We apply these methods to our data set to set an upper limit on the strength of the nHz-frequency stochastic supermassive black hole gravitational wave background of h_c (1 yr^(–1)) < 7 × 10^(–15) (95%). This result is dominated by the timing of the two best pulsars in the set, PSRs J1713+0747 and J1909–3744.
The Astrophysical Journal | 2016
Zaven Arzoumanian; A. Brazier; S. Burke-Spolaor; S. J. Chamberlin; S. Chatterjee; B. Christy; J. M. Cordes; Neil J. Cornish; K. Crowter; Paul Demorest; X. Deng; T. Dolch; Justin Ellis; R. D. Ferdman; E. Fonseca; N. Garver-Daniels; M. E. Gonzalez; F. A. Jenet; Glenn Jones; M. L. Jones; V. M. Kaspi; M. Koop; M. T. Lam; T. J. W. Lazio; Lina Levin; Andrea N. Lommen; D. R. Lorimer; J. Luo; R. S. Lynch; D. R. Madison
We compute upper limits on the nanohertz-frequency isotropic stochastic gravitational wave background (GWB) using the 9 year data set from the North American Nanohertz Observatory for Gravitational Waves (NANOGrav) collaboration. Well-tested Bayesian techniques are used to set upper limits on the dimensionless strain amplitude (at a frequency of 1 yr^(−1) for a GWB from supermassive black hole binaries of A_(gw) < 1.5 x 10^(-15). We also parameterize the GWB spectrum with a broken power-law model by placing priors on the strain amplitude derived from simulations of Sesana and McWilliams et al. Using Bayesian model selection we find that the data favor a broken power law to a pure power law with odds ratios of 2.2 and 22 to one for the Sesana and McWilliams prior models, respectively. Using the broken power-law analysis we construct posterior distributions on environmental factors that drive the binary to the GW-driven regime including the stellar mass density for stellar-scattering, mass accretion rate for circumbinary disk interaction, and orbital eccentricity for eccentric binaries, marking the first time that the shape of the GWB spectrum has been used to make astrophysical inferences. Returning to a power-law model, we place stringent limits on the energy density of relic GWs, Ω_(gw)(f)h^2 < 4.2 x 10^(-10). Our limit on the cosmic string GWB, Ω_(gw)(f)h^2 < 2.2 x 10^(-10), translates to a conservative limit on the cosmic string tension with Gµ < 3.3 x 10^(-8), a factor of four better than the joint Planck and high-l cosmic microwave background data from other experiments.
Monthly Notices of the Royal Astronomical Society | 2007
X. P. You; G. Hobbs; William A. Coles; R. N. Manchester; Ross Edwards; M. Bailes; John M. Sarkissian; J. P. W. Verbiest; W. van Straten; A. W. Hotan; S. M. Ord; F. A. Jenet; N. D. R. Bhat; A. Teoh
We present an analysis of the variations seen in the dispersion measures (DMs) of 20-ms pulsars observed as part of the Parkes Pulsar Timing Array project.We carry out a statistically rigorous structure function analysis for each pulsar and show that the variations seen for most pulsars are consistent with those expected for an interstellar medium characterized by a Kolmogorov turbulence spectrum. The structure functions for PSRs J1045−4509 and J1909−3744 provide the first clear evidence for a large inner scale, possibly due to ion–neutral damping. We also show the effect of the solar wind on the DMs and show that the simple models presently implemented into pulsar timing packages cannot reliably correct for this effect. For the first time we clearly show how DM variations affect pulsar timing residuals and how they can be corrected in order to obtain the highest possible timing precision. Even with our presently limited data span, the residuals (and all parameters derived from the timing) for six of our pulsars have been significantly improved by correcting for the DM variations.
Monthly Notices of the Royal Astronomical Society | 2010
D. R. B. Yardley; G. Hobbs; F. A. Jenet; J. P. W. Verbiest; Z. L. Wen; R. N. Manchester; W. A. Coles; W. van Straten; M. Bailes; N. D. R. Bhat; S. Burke-Spolaor; D. J. Champion; A. W. Hotan; John M. Sarkissian
ABSTRACT We present the sensitivity of the Parkes Pulsar Timing Array to gravitational wavesemitted by individual super-massive black-hole binary systems in the early phases ofcoalescing at the cores of merged galaxies. Our analysis includes a detailed study of theeffects of fitting a pulsar timing model to non-white timing residuals. Pulsar timingis sensitive at nanoHertz frequencies and hence complementary to LIGO and LISA.We place a sky-averaged constraint on the merger rate of nearby (z<0.6) black-holebinaries in the early phases of coalescence with a chirp mass of 10 10 M ⊙ of less thanone merger every seven years. The prospects for future gravitational-wave astronomyof this type with the proposed Square Kilometre Array telescope are discussed.Key words: gravitational waves – pulsars: general. 1 INTRODUCTIONIn the era of ground- and space-based gravitational-wave(GW) detectors, GW astronomy is becoming increasinglyimportant for the wider astronomy and physics communi-ties. The ability of the current GW community to provide ei-ther limits on, or detections of, GW emission is of enormousimportance in characterising astrophysical sources of inter-est for further investigation. It is possible that GW detectionwill provide the only means to probe some of these sources.The sensitivity of existing and future observatories to indi-vidual GW sources, such as neutron-star binary systems andcoalescing black-hole binary systems, has been calculatedin the ∼kHz and ∼mHz frequency ranges. The sensitiv-ity curves of the Laser Interferometer Gravitational-WaveObservatory (Abbott et al. 2009)
The Astrophysical Journal | 2006
B. A. Jacoby; P. B. Cameron; F. A. Jenet; S. Anderson; Rohan Murty; S. R. Kulkarni
We report the direct measurement of orbital period decay in the double neutron star pulsar system PSR B2127+11C in the globular cluster M15 at the rate of (-3.95 ± 0.13) × 10-12, consistent with the prediction of general relativity at the ~3% level. We find the pulsar mass to be mp = 1.358 ± 0.010 M☉ and the companion mass mc = 1.354 ± 0.010 M☉. We also report long-term pulse timing results for the pulsars PSR B2127+11A and PSR B2127+11B, including confirmation of the cluster proper motion.
The Astrophysical Journal | 2014
K. Stovall; Ryan S. Lynch; Scott M. Ransom; Anne M. Archibald; S. Banaszak; C. Biwer; J. Boyles; L. Dartez; D. Day; A. J. Ford; J. Flanigan; A. Garcia; J. W. T. Hessels; Jesus Hinojosa; F. A. Jenet; David L. Kaplan; C. Karako-Argaman; V. M. Kaspi; V. I. Kondratiev; S. Leake; D. R. Lorimer; G. Lunsford; J. G. Martinez; A. Mata; M. A. McLaughlin; Mallory Strider Ellison Roberts; M. Rohr; X. Siemens; I. H. Stairs; J. van Leeuwen
We describe an ongoing search for pulsars and dispersed pulses of radio emission, such as those from rotating radio transients (RRATs) and fast radio bursts (FRBs), at 350 MHz using the Green Bank Telescope. With the Green Bank Ultimate Pulsar Processing Instrument, we record 100 MHz of bandwidth divided into 4,096 channels every 81.92
The Astrophysical Journal | 2014
Zaven Arzoumanian; A. Brazier; S. Burke-Spolaor; S. J. Chamberlin; S. Chatterjee; J. M. Cordes; Paul Demorest; X. Deng; T. Dolch; J. A. Ellis; R. D. Ferdman; N. Garver-Daniels; F. A. Jenet; Glenn Jones; V. M. Kaspi; M. Koop; M. T. Lam; T. J. W. Lazio; Andrea N. Lommen; D. R. Lorimer; J. Luo; Ryan S. Lynch; D. R. Madison; M. A. McLaughlin; Sean T. McWilliams; David J. Nice; Nipuni Palliyaguru; T. T. Pennucci; Scott M. Ransom; Alberto Sesana
\mu s