Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where F. Burnet is active.

Publication


Featured researches published by F. Burnet.


Bulletin of the American Meteorological Society | 2003

Dynamics and chemistry of marine stratocumulus - DYCOMS II

Bjorn Stevens; Donald H. Lenschow; Gabor Vali; H. Gerber; Alan R. Bandy; B. W. Blomquist; Christopher S. Bretherton; F. Burnet; Teresa L. Campos; S. Chai; Ian C. Faloona; D. Friesen; Samuel Haimov; Krista K. Laursen; Douglas K. Lilly; S. M. Loehrer; Szymon P. Malinowski; Bruce Morley; Markus D. Petters; Lynn M. Russell; Verica Savic-Jovcic; J. R. Snider; D. Straub; Marcin J. Szumowski; H. Takagi; Mark Tschudi; Cynthia H. Twohy; Melanie A. Wetzel; M. van Zanten

The second Dynamics and Chemistry of Marine Stratocumulus (DYCOMS-II) field study is described. The field program consisted of nine flights in marine stratocumulus west-southwest of San Diego, California. The objective of the program was to better understand the physics a n d dynamics of marine stratocumulus. Toward this end special flight strategies, including predominantly nocturnal flights, were employed to optimize estimates of entrainment velocities at cloud-top, large-scale divergence within the boundary layer, drizzle processes in the cloud, cloud microstructure, and aerosol–cloud interactions. Cloud conditions during DYCOMS-II were excellent with almost every flight having uniformly overcast clouds topping a well-mixed boundary layer. Although the emphasis of the manuscript is on the goals and methodologies of DYCOMS-II, some preliminary findings are also presented—the most significant being that the cloud layers appear to entrain less and drizzle more than previous theoretical work led investigat...


Journal of Advances in Modeling Earth Systems | 2011

Controls on precipitation and cloudiness in simulations of trade-wind cumulus as observed during RICO

M. C. vanZanten; Bjorn Stevens; Louise Nuijens; A. P. Siebesma; Andrew S. Ackerman; F. Burnet; Anning Cheng; F. Couvreux; Hongli Jiang; Marat Khairoutdinov; Yefim L. Kogan; D. C. Lewellen; David B. Mechem; Kozo Nakamura; Akira Noda; Ben Shipway; Joanna Slawinska; Shouping Wang; Andrzej A. Wyszogrodzki

Twelve large-eddy simulations, with a wide range of microphysical representations, are compared to each other and to independent measurements. The measurements and the initial and forcing data for the simulations are taken from the undisturbed period of the Rain in Cumulus over the Ocean (RICO) field study. A regional downscaling of meteorological analyses is performed so as to provide forcing data consistent with the measurements. The ensemble average of the simulations plausibly reproduces many features of the observed clouds, including the vertical structure of cloud fraction, profiles of cloud and rain water, and to a lesser degree the population density of rain drops. The simulations do show considerable departures from one another in the representation of the cloud microphysical structure and the ensuant surface precipitation rates, increasingly so for the more simplified microphysical models. There is a robust tendency for simulations that develop rain to produce a shallower, somewhat more stable cloud layer. Relations between cloud cover and precipitation are ambiguous.


Journal of Geophysical Research | 2005

Evaluation of the aerosol indirect effect in marine stratocumulus clouds: Droplet number, size, liquid water path, and radiative impact

Cynthia H. Twohy; Markus D. Petters; Jefferson R. Snider; Bjorn Stevens; William Richard Tahnk; Melanie A. Wetzel; Lynn M. Russell; F. Burnet

Received 9 June 2004; revised 24 September 2004; accepted 10 February 2005; published 20 April 2005. [1] Data from nine stratocumulus clouds in the northeastern Pacific Ocean were analyzed to determine the effect of aerosol particles on cloud microphysical and radiative properties. Seven nighttime and two daytime cases were included. The number concentration of below-cloud aerosol particles (>0.10 mm diameter) was highly correlated with cloud droplet number concentration. Droplet number concentrations were typically about 75% of particle number concentration in the range of particle concentrations studied (� 400 cm � 3 ). Particle number was anticorrelated with droplet size and with liquid water content in drizzle-sized drops. Radiative impact also depends upon cloud liquid water content and geometric thickness. Although most variability in these macroscopic properties of the clouds could be attributed to variability in the large-scale environment, a weak anticorrelation between particle concentration and cloud geometric thickness was observed. Because of these variations, no correlation between calculated cloud optical thickness or albedo and particle concentration was detectable for the data set as a whole. For regions with comparable liquid water contents in an individual cloud, higher particle concentrations did correspond to increased cloud optical thickness. These results verify that higher particle concentrations do directly affect the microphysics of stratiform clouds. However, the constant liquid water path assumption usually invoked in the Twomey aerosol indirect effect may not be valid.


Journal of the Atmospheric Sciences | 2007

Observational Study of the Entrainment-Mixing Process in Warm Convective Clouds

F. Burnet; Jean-Louis Brenguier

Abstract Thermodynamical and microphysical measurements collected in convective clouds are examined within the frame of the homogeneous/inhomogeneous mixing concept, to determine how entrainment-mixing processes affect cloud droplets, their number concentration, and their mean size. The three selected case studies—one stratocumulus layer and two cumulus clouds—exhibit very different values of the cloud updraft intensity, of the adiabatic droplet mean volume diameter, and of the saturation deficit in the environment, all three parameters that are expected to govern the microphysical response to entrainmentmixing. The results confirm that the observed microphysical features are sensitive to the droplet response time to evaporation and to the turbulent homogenization time scale, as suggested by the inhomogeneous mixing concept. They also reveal that an instrumental artifact due to the heterogeneous spatial droplet distribution may be partly responsible for the observed heterogeneous mixing features. The chal...


Journal of the Atmospheric Sciences | 2005

Holes and Entrainment in Stratocumulus

H. Gerber; Glendon Frick; Szymon P. Malinowski; F. Burnet

Aircraft flights through stratocumulus clouds (Sc) during the Dynamics and Chemistry of Marine Stratocumulus II (DYCOMS-II) study off the California coast found narrow in-cloud regions with less liquid water content (LWC) and cooler temperatures than average background values. The regions are named cloud holes and are assumed to be a result of water evaporated by the entrainment of dryer air from above the Sc. While such features have been noted previously, this study provided a unique opportunity to investigate in much greater detail the nature of the holes, as well as their relationship to the entrainment rate, because high-speed temperature and LWC probes with maximum spatial resolution of 10 cm were flown together for the first time. Nine long-duration flights were made through mostly unbroken Sc for which conditional sampling was used to identify the location and size of the holes. The holes are concentrated near cloud top, their average width near cloud top is about 5 m, their relative length distribution is nearly constant for all flights, and they can penetrate hundreds of meters deep into the Sc before being lost by mixing. Entrainment velocities at cloud top are estimated from measurements of fluxes of reduced LWC and vapor mixing ratios in holes, the fraction of cloud area covered by holes, and the total water jump between cloud top and the free atmosphere. Rates as large as 10 mm s 1 are found for nocturnal flights, and these rates are about 3 times larger than for daytime flight segments. The rates correlate best with the size of the buoyancy jump above the Sc; the present conditional-sampling approach for measuring the rates gives larger rates than the “flux jump” rates determined by others for the same flights by a factor of about 2. The stability criterion for all Sc predicts thinning and breakup of the Sc, which does not occur. The minimal amount of cloud-top evaporative cooling caused by entrainment contributes little to the top-down convection dominated by radiative cooling during nocturnal flights; however, evaporative cooling caused by the mixing of holes as they subduct with the large-scale eddy circulation in the Sc may contribute, but with an as-of-yet unknown amount.


Journal of Atmospheric and Oceanic Technology | 2002

Comparison between Standard and Modified Forward Scattering Spectrometer Probes during the Small Cumulus Microphysics Study

F. Burnet; Jean-Louis Brenguier

Abstract Microphysical measurements performed during the Small Cumulus Microphysics Study (SCMS) experiment are analyzed in order to examine the instrumental limitations of forward scattering spectrometer probes (FSSPs). Complementary information collected with a modified version of the instrument, the Fast-FSSP, are used to address crucial issues such as the size calibration of the spectrometers and the effects on the measured spectra (distortion and broadening), of beam inhomogeneities, of variations of the sampling section, and of the coincidence of particles. Their impact on the calculation of liquid water content is evaluated by the comparison with measurements performed with a hot-wire probe and a particle volume monitor. In addition to the statistical approach that aims at evaluating the typical uncertainty of the measurements, special attention is given to the identification of circumstances under which some of the instrumental limitations combined are likely to affect significantly the accuracy o...


Bulletin of the American Meteorological Society | 2017

The Dynamics–Aerosol–Chemistry–Cloud Interactions in West Africa Field Campaign: Overview and Research Highlights

Cyrille Flamant; Peter Knippertz; Andreas H. Fink; Aristide Akpo; Barbara J. Brooks; Christine J. Chiu; Hugh Coe; Sylvester K. Danuor; M. J. Evans; Oluwagbemiga O. Jegede; N. Kalthoff; Abdourahamane Konaré; Catherine Liousse; Fabienne Lohou; C. Mari; Hans Schlager; Alfons Schwarzenboeck; Bianca Adler; Leonard K. Amekudzi; Jeffrey N. A. Aryee; Muritala Ayoola; A. M. Batenburg; Geoffrey Bessardon; Stephan Borrmann; Joel Brito; Keith N. Bower; F. Burnet; Valéry Catoire; Aurélie Colomb; Claude Denjean

Unprecedented ground-based and aircraft measurements in June-July 2016 in southern West Africa characterize atmospheric composition and dynamics, low-level cloud properties, the diurnal cycle, and air pollution impacts on health. The EU-funded project DACCIWA (Dynamics-Aerosol-Chemistry-Cloud Interactions in West Africa) investigates the relationship between weather, climate, and air pollution in southern West Africa, an area with rapid population growth, urbanisation, and increase in anthropogenic aerosol emissions. The air over this region contains a unique mixture of natural and anthropogenic gases, liquid droplets and particles, emitted in an environment, in which multi-layer clouds frequently form. These exert a large influence on the local weather and climate, mainly due to their impact on radiation, the surface energy balance, and thus the diurnal cycle of the atmospheric boundary layer. In June and July 2016, DACCIWA organized a major international field campaign in Ivory Coast, Ghana, Togo, Benin, and Nigeria. Three supersites in Kumasi, Save, and Ile-Ife conducted permanent measurements and 15 Intensive observation periods. Three European aircraft together flew 50 research flights between 27 June and 16 July 2016 for a total of 155 hours. DACCIWA scientists launched weather balloons several times a day across the region (772 in total), measured urban emissions, and evaluated health data. The main objective was to build robust statistics of atmospheric composition, dynamics, and low-level cloud properties in various chemical landscapes to investigate their mutual interactions. This article presents an overview of the DACCIWA field campaign activities as well as some first research highlights. The rich data obtained during the campaign will be made available to the scientific community and help to advance scientific understanding, modeling, and monitoring the atmosphere over southern West Africa.


Remote Sensing of Clouds and the Atmosphere XVII; and Lidar Technologies, Techniques, and Measurements for Atmospheric Remote Sensing VIII | 2012

Preliminary results of the PreViBOSS project: description of the fog life cycle by ground-based and satellite observation

Thierry Elias; Dominique Jolivet; Jean-Charles Dupont; Martial Haeffelin; F. Burnet

The instrument set-up designed by the PreViBOSS project for the ParisFog field campaign is suitable to sound microphysical properties of droplets and interstitial aerosols during developed fog in a semi-urban environment. Developed fog is defined as LWC < 7 mg m-3 and the temperature vertical gradient over 30 m, ΔT, smaller than 0.04 K/m. Visibility averaged over November 2011 is 385±340 m (with rare values larger than 1000 m), and month average of LWC is 60±60 mg m-3. The droplet effective radius decreases from 14 to 4 μm when the number concentration increases from less than 10 to 220 cm-3. Particle extinction coefficient is computed by Mie theory applied on size distribution observed during developed fog in ambient conditions by both PALAS WELAS and DMT FM100. Comparison with particle extinction coefficient directly measured by the Degreanne DF20 visibilimeter demonstrates satisfying agreement, within combined uncertainties. Ratio of computed over measured particle extinction coefficient is 1.15±0.35. Visibility smaller than 1000 m at 3 m above ground level is observed not only during developed fog but also during shallow fog, which presents a significant vertical gradient, as ΔT > 0.4 K/m. In this case, LWC is highly variable and may be observed below 7 mg m-3. The consequent month average of LWC is 30±80 mg m-3. The optical counters miss large droplets significantly contributing to extinction in shallow fogs. Consequently, it is not possible to reproduce with satisfaction the particle extinction coefficient in shallow fog. Fog type may be distinguished by association of groundbased visibilimeter and MSG/SEVIRI. When clear-sky is given by EUMETSAT/NWCSAF cloud type product while visibility is observed smaller than 1000 m at SIRTA, in 75% cases a shallow fog occurs, and in other cases, horizontal heterogeneity characterises the developed fog within the SIRTA pixel, as during the dissipation phase. Moreover, consistently, low and very low clouds are mostly detected by the satellite product when developed fog is observed by ground-based instrumentation.


La Météorologie [ISSN 0026-1181], 2017, Série 8, 98, p. 9-10 | 2017

Un drone au-dessus des océans : le projet Miriad

G. C. Roberts; F. Burnet; Sébastien Barrau; Patrice Medina; Pierre Durand; Michel Gavart

Autres affiliations des auteurs de Meteo-France : Greg Roberts : Scripps Institution of Oceanography, La Jolla, Etats-Unis.


Atmospheric Chemistry and Physics | 2011

Cloud optical thickness and liquid water path – does the k coefficient vary with droplet concentration?

Jean-Louis Brenguier; F. Burnet; O. Geoffroy

Collaboration


Dive into the F. Burnet's collaboration.

Top Co-Authors

Avatar

K. Sellegri

Blaise Pascal University

View shared research outputs
Top Co-Authors

Avatar

Alfons Schwarzenboeck

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Evelyn Freney

Blaise Pascal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Dupuy

Blaise Pascal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Knippertz

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge