Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where F. Cadoux is active.

Publication


Featured researches published by F. Cadoux.


Journal of Instrumentation | 2013

Design and Operation of FACT -- The First G-APD Cherenkov Telescope

H. Anderhub; M. Backes; A. Biland; V. Boccone; I. Braun; T. Bretz; F. Cadoux; V. Commichau; L. Djambazov; D. Dorner; S. Einecke; D. Eisenacher; A. Gendotti; Oliver Grimm; H. von Gunten; C. Haller; D. Hildebrand; U. Horisberger; B. Huber; K. S. Kim; M. L. Knoetig; J.H. Kohne; T. Krähenbühl; B. Krumm; M. Lee; E. Lorenz; W. Lustermann; E. Lyard; K. Mannheim; Mohamed Tahar Meharga

The First G-APD Cherenkov Telescope (FACT) is designed to detect cosmic gamma-rays with energies from several hundred GeV up to about 10 TeV using the Imaging Atmospheric Cherenkov Technique. In contrast to former or existing telescopes, the camera of the FACT telescope is comprised of solid-state Geiger-mode Avalanche Photodiodes (G-APD) instead of photomultiplier tubes for photo detection. It is the first full-scale device of its kind employing this new technology. The telescope is operated at the Observatorio del Roque de los Muchachos (La Palma, Canary Islands, Spain) since fall 2011. This paper describes in detail the design, construction and operation of the system, including hardware and software aspects. Technical experiences gained after one year of operation are discussed and conclusions with regard to future projects are drawn.


Proceedings of SPIE | 2014

The large area detector of LOFT: the Large Observatory for X-ray Timing

S. Zane; D. J. Walton; T. Kennedy; M. Feroci; J. W. den Herder; M. Ahangarianabhari; A. Argan; P. Azzarello; G. Baldazzi; Marco Barbera; Didier Barret; Giuseppe Bertuccio; P. Bodin; E. Bozzo; L. Bradley; F. Cadoux; Philippe Cais; R. Campana; J. Coker; A. Cros; E. Del Monte; A. De Rosa; S. Di Cosimo; I. Donnarumma; Y. Favre; Charlotte Feldman; George W. Fraser; Fabio Fuschino; M. Grassi; M. Hailey

LOFT (Large Observatory for X-ray Timing) is one of the five candidates that were considered by ESA as an M3 mission (with launch in 2022-2024) and has been studied during an extensive assessment phase. It is specifically designed to perform fast X-ray timing and probe the status of the matter near black holes and neutron stars. Its pointed instrument is the Large Area Detector (LAD), a 10 m2-class instrument operating in the 2-30keV range, which holds the capability to revolutionise studies of variability from X-ray sources on the millisecond time scales. The LAD instrument has now completed the assessment phase but was not down-selected for launch. However, during the assessment, most of the trade-offs have been closed leading to a robust and well documented design that will be reproposed in future ESA calls. In this talk, we will summarize the characteristics of the LAD design and give an overview of the expectations for the instrument capabilities.


Astroparticle Physics | 2016

A crosstalk and non-uniformity correction method for the space-borne Compton polarimeter POLAR

Hualin Xiao; Wojtek Hajdas; Bobing Wu; N. Produit; Tianwei Bao; T. Batsch; F. Cadoux; Junying Chai; Yongwei Dong; M. N. Kong; Siwei Kong; D. Rybka; Catherine Leluc; Lu Li; Jiangtao Liu; Xin Liu; R. Marcinkowski; Mercedes Paniccia; M. Pohl; D. Rapin; Haoli Shi; Liming Song; Jianchao Sun; Jacek Szabelski; Ruijie Wang; X. Wen; Hanhui Xu; Laiyu Zhang; Li Zhang; Shuang-Nan Zhang

Abstract In spite of extensive observations and numerous theoretical studies in the past decades several key questions related with Gamma-Ray Bursts (GRB) emission mechanisms are still to be answered. Precise detection of the GRB polarization carried out by dedicated instruments can provide new data and be an ultimate tool to unveil their real nature. A novel space-borne Compton polarimeter POLAR onboard the Chinese space station TG2 is designed to measure linear polarization of gamma-rays arriving from GRB prompt emissions. POLAR uses plastics scintillator bars (PS) as gamma-ray detectors and multi-anode photomultipliers (MAPMTs) for readout of the scintillation light. Inherent properties of such detection systems are crosstalk and non-uniformity. The crosstalk smears recorded energy over multiple channels making both non-uniformity corrections and energy calibration more difficult. Rigorous extraction of polarization observables requires to take such effects properly into account. We studied influence of the crosstalk on energy depositions during laboratory measurements with X-ray beams. A relation between genuine and recorded energy was deduced using an introduced model of data analysis. It postulates that both the crosstalk and non-uniformities can be described with a single matrix obtained in calibrations with mono-energetic X- and gamma-rays. Necessary corrections are introduced using matrix based equations allowing for proper evaluation of the measured GRB spectra. Validity of the method was established during dedicated experimental tests. The same approach can be also applied in space utilizing POLAR internal calibration sources. The introduced model is general and with some adjustments well suitable for data analysis from other MAPMT-based instruments.


Proceedings of SPIE | 2010

The High Time Resolution Spectrometer (HTRS) aboard the International X-ray Observatory (IXO)

Didier Barret; Laurent Ravera; Pierre Bodin; C. Amoros; Martin Boutelier; Jean-Michel Glorian; Olivier Godet; Guillaume Orttner; K. Lacombe; Roger Pons; D. Rambaud; P. Ramon; Jean-Marc Biffi; Marielle Belasic; Rodolphe Clédassou; Delphine Faye; Benjamin Pouilloux; Christian Motch; Laurent D. Michel; Peter Lechner; A. Niculae; Lothar Strueder; Giuseppe Distratis; E. Kendziorra; A. Santangelo; Christoph Tenzer; Henning Wende; Joern Wilms; Ingo Kreykenbohm; Christian Schmid

The High Time Resolution Spectrometer (HTRS) is one of the five focal plane instruments of the International X-ray Observatory (IXO). The HTRS is the only instrument matching the top level mission requirement of handling a one Crab X-ray source with an efficiency greater than 10%. It will provide IXO with the capability of observing the brightest X-ray sources of the sky, with sub-millisecond time resolution, low deadtime, low pile-up (less than 2% at 1 Crab), and CCD type energy resolution (goal of 150 eV FWHM at 6 keV). The HTRS is a non-imaging instrument, based on a monolithic array of Silicon Drift Detectors (SDDs) with 31 cells in a circular envelope and a X-ray sensitive volume of 4.5 cm2 x 450 μm. As part of the assessment study carried out by ESA on IXO, the HTRS is currently undergoing a phase A study, led by CNES and CESR. In this paper, we present the current mechanical, thermal and electrical design of the HTRS, and describe the expected performance assessed through Monte Carlo simulations.


nuclear science symposium and medical imaging conference | 2013

FACT - The G-APD revolution in Cherenkov astronomy

T. Bretz; H. Anderhub; M. Backes; A. Biland; V. Boccone; I. Braun; Jens Buss; F. Cadoux; V. Commichau; L. Djambazov; D. Dorner; S. Einecke; D. Eisenacher; A. Gendotti; Oliver Grimm; H. von Gunten; C. Haller; Christina Hempfling; D. Hildebrand; U. Horisberger; B. Huber; K.-S. Kim; M. L. Knoetig; J.H. Kohne; T. Krähenbühl; B. Krumm; M. Lee; E. Lorenz; W. Lustermann; E. Lyard

Since two years, the FACT telescope is operating on the Canary Island of La Palma. Apart from its purpose to serve as a monitoring facility for the brightest TeV blazars, it was built as a major step to establish solid state photon counters as detectors in Cherenkov astronomy. The camera of the First G-APD Cherenkov Telesope comprises 1440 Geiger-mode avalanche photo diodes (G-APD), equipped with solid light guides to increase the effective light collection area of each sensor. Since no sense-line is available, a special challenge is to keep the applied voltage stable although the current drawn by the G-APD depends on the flux of night-sky background photons significantly varying with ambient light conditions. Methods have been developed to keep the temperature and voltage dependent response of the G-APDs stable during operation. As a cross-check, dark count spectra with high statistics have been taken under different environmental conditions. In this presentation, the project, the developed methods and the experience from two years of operation of the first G-APD based camera in Cherenkov astronomy under changing environmental conditions will be presented.


Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2018

Design and construction of the POLAR detector

N. Produit; Tianwei Bao; T. Batsch; T. Bernasconi; I. Britvich; F. Cadoux; I. Cernuda; Junying Chai; Yongwei Dong; N. Gauvin; Wojtek Hajdas; Merlin Kole; M. N. Kong; R. Kramert; Li Li; Jing Liu; X. Liu; R. Marcinkowski; S. Orsi; M. Pohl; D. Rapin; D. Rybka; A. Rutczynska; Haoli Shi; P. Socha; Jianchao Sun; Longlong Song; Jacek Szabelski; I. Traseira; Hualin Xiao

Abstract The POLAR detector is a space based Gamma Ray Burst (GRB) polarimeter with a wide field of view, which covers almost half the sky. The instrument uses Compton scattering of gamma rays on a plastic scintillator hodoscope to measure the polarization of the incoming photons. The instrument has been successfully launched on board of the Chinese space laboratory Tiangong 2 on September 15, 2016. The construction of the instrument components is described in this article. Details are provided on problems encountered during the construction phase and their solutions. Initial performance of the instrument in orbit is as expected from ground tests and Monte Carlo simulation.


arXiv: Instrumentation and Methods for Astrophysics | 2016

Prototype of the SST-1M Telescope Structure for the Cherenkov Telescope Array

J. Niemiec; W. Bilnik; L. Bogacz; J. Borkowski; F. Cadoux; A. Christov; M. Dyrda; Y. Favre; A. Frankowski; M. Grudzi; M. Heller; M. Jamrozy; M. Janiak; J. Kasperek; K. Lalik; E. Lyard; E. Mach; D. Mandat; R. Moderski; T. Montaruli; A. Neronov; M. Ostrowski; M. Pech; A. Porcelli; E. Prandini; P. Rajda; M. Rameez; P. Schovanek; K. Seweryn; K. Skowron

A single-mirror small-size (SST-1M) Davies-Cotton telescope with a dish diameter of 4 m has been built by a consortium of Polish and Swiss institutions as a prototype for one of the proposed small-size telescopes for the southern observatory of the Cherenkov Telescope Array (CTA). The design represents a very simple, reliable, and cheap solution. The mechanical structure prototype with its drive system is now being tested at the Institute of Nuclear Physics PAS in Krakow. Here we present the design of the prototype and results of the performance tests of the structure and the drive and control system.


Proceedings of The 34th International Cosmic Ray Conference — PoS(ICRC2015) | 2016

The test results of the Silicon Tungsten Tracker of DAMPE

Valentina Gallo; G. Ambrosi; R. Asfandiyarov; Philippe Azzarello; Paolo Bernardini; B. Bertucci; Alessio Bolognini; F. Cadoux; Mirco Caprai; Ivan De Mitri; Maxime Domenjoz; Dong Yifan; M. Duranti; Fan Rui; P. Fusco; F. Gargano; Gong Ke; Dongya Guo; Coralie Husi; M. Ionica; Daniel La Marra; F. Loparco; G. Marsella; Mario Nicola Mazziottai; Andrea Nardinocchi; Laurent Nicola; Gabriel Pelleriti; Wenxi Peng; M. Pohl; V. Postolache

V. Gallo∗1, G. Ambrosi2, R. Asfandiyarov1, P. Azzarello1, P. Bernardini3,4, B. Bertucci2,5, A. Bolognini2,5, F. Cadoux1, M. Caprai2, I. De Mitri3,4, M. Domenjoz1, Y. Dong6, M. Duranti2,5, R. Fan6, P. Fusco7,8, F. Gargano7, K. Gong6, D. Guo6, C. Husi1, M. Ionica2,5, D. La Marra1, F. Loparco7,8, G. Marsella3,4, M.N. Mazziotta7,, A. Nardinocchi2,5, L. Nicola1, G. Pelleriti1, W. Peng6, M. Pohl1, V. Postolache2, R. Qiao6, A. Surdo4, A. Tykhonov1, S. Vitillo1, H. Wang6, M. Weber1, D. Wu6, X. Wu1, F. Zhang6


Proceedings of SPIE | 2014

The POLAR gamma-ray burst polarimeter onboard the Chinese Spacelab

S. Orsi; F. Cadoux; Catherine Leluc; Mercedes Paniccia; M. Pohl; D. Rapin; N. Gauvin; N. Produit; Tianwei Bao; Junying Chai; Yongwei Dong; M. N. Kong; Li Lu; Jiangtao Liu; Xin Liu; Haoli Shi; Jianchao Sun; Ruijie Wang; X. Wen; Bobing Wu; Hualin Xiao; Hanhui Xu; Li Zhang; Laiyu Zhang; Shuang-Nan Zhang; Yongjie Zhang; Ilia Britvich; Wojtek Hajdas; Radoslaw Marcinkowski; D. Rybka

POLAR is a joint European-Chinese experiment aimed at a precise measurement of hard X-ray polarization (50-500 keV) of the prompt emission of Gamma-Ray Bursts. The main aim is a better understanding of the geometry of astrophysical sources and of the X-ray emission mechanisms. POLAR is a compact Compton polarimeter characterized by a large modulation factor, effective area, and field of view. It consists of 1600 low-Z plastic scintillator bars read out by 25 at-panel multi-anode photomultipliers. The incoming X-rays undergo Compton scattering in the bars and produce a modulation pattern; experiments with polarized synchrotron radiation and GEANT4 Monte Carlo simulations have shown that the polarization degree and angle can be retrieved from this pattern with the accuracy necessary for identifying the GRB mechanism. The flight model of POLAR is currently under construction in Geneva. The POLAR instrument will be placed onboard the Chinese spacelab TG-2, scheduled for launch in low Earth orbit in 2015. The main milestones of the space qualification campaign will be described in the paper.


Journal of Instrumentation | 2014

A double-sided silicon micro-strip Super-Module for the ATLAS Inner Detector upgrade in the High-Luminosity LHC

S. Gonzalez-Sevilla; A. Affolder; Phillip Allport; F. Anghinolfi; G. Barbier; R. L. Bates; G. A. Beck; V. Benitez; J. Bernabeu; G. Blanchot; I. Bloch; Andrew Blue; P. Booker; Richard Brenner; Craig Buttar; F. Cadoux; G. Casse; J. Carroll; I. Church; J.V. Civera; A. Clark; P. Dervan; S. Diez; M. Endo; V. Fadeyev; P. Farthouat; Y. Favre; D. Ferrere; C. Friedrich; R. French

The ATLAS experiment is a general purpose detector aiming to fully exploit the discovery potential of the Large Hadron Collider (LHC) at CERN. It is foreseen that after several years of successful data-taking, the LHC physics programme will be extended in the so-called High-Luminosity LHC, where the instantaneous luminosity will be increased up to 5 × 1034 cm−2 s−1. For ATLAS, an upgrade scenario will imply the complete replacement of its internal tracker, as the existing detector will not provide the required performance due to the cumulated radiation damage and the increase in the detector occupancy. The current baseline layout for the new ATLAS tracker is an all-silicon-based detector, with pixel sensors in the inner layers and silicon micro-strip detectors at intermediate and outer radii. The super-module is an integration concept proposed for the strip region of the future ATLAS tracker, where double-sided stereo silicon micro-strip modules are assembled into a low-mass local support structure. An electrical super-module prototype for eight double-sided strip modules has been constructed. The aim is to exercise the multi-module readout chain and to investigate the noise performance of such a system. In this paper, the main components of the current super-module prototype are described and its electrical performance is presented in detail.

Collaboration


Dive into the F. Cadoux's collaboration.

Top Co-Authors

Avatar

Y. Favre

University of Geneva

View shared research outputs
Top Co-Authors

Avatar

E. Lyard

University of Geneva

View shared research outputs
Top Co-Authors

Avatar

M. Jamrozy

Jagiellonian University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Frankowski

Polish Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

E. Mach

Jagiellonian University

View shared research outputs
Top Co-Authors

Avatar

W. Bilnik

AGH University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Pohl

University of Potsdam

View shared research outputs
Researchain Logo
Decentralizing Knowledge