F. Di Capua
University of Naples Federico II
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by F. Di Capua.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2006
L. Arrabito; E. Barbuto; C. Bozza; S. Buontempo; L. Consiglio; D. Coppola; M. Cozzi; J. Damet; N. D’Ambrosio; G. De Lellis; M. De Serio; F. Di Capua; D. Di Ferdinando; D. Di Marco; Luigi Salvatore Esposito; G. Giacomelli; G. Grella; M. Hauger; F. Juget; I. Kreslo; M. Giorgini; M. Ieva; Imad Baptiste Laktineh; K. Manai; G. Mandrioli; A. Marotta; S. Manzoor; P. Migliozzi; P. Monacelli; M.T. Muciaccia
The use of nuclear emulsions in very large physics experiments is now possible thanks to the recent improvements in the industrial production of emulsions and to the development of fast automated microscopes. In this paper the hardware performances of the European Scanning System (ESS) are described. The ESS is a very fast automatic system developed for the mass scanning of the emulsions of the OPERA experiment, which requires microscopes with scanning speeds of � 20 cm 2 =h in an emulsion volume of 44mm thickness.
New Journal of Physics | 2011
A. Kayis-Topaksu; G. Onengut; R. van Dantzig; M. de Jong; R. Oldeman; M. Guler; U. Köse; P. Tolun; M.G. Catanesi; M.T. Muciaccia; K. Winter; B. Van de Vyver; P. Vilain; G. Wilquet; B. Saitta; E. Di Capua; S. Ogawa; H. Shibuya; I.R. Hristova; T. Kawamura; D. Kolev; H. Meinhard; J. Panman; A. Rozanov; R. Tsenov; J.W.E. Uiterwijk; P. Zucchelli; J. Goldberg; M. Chikawa; J.S. Song
The nuclear emulsion target of the CHORUS detector was exposed to the wide-band neutrino beam of the CERN SPS of 27 GeV average neutrino energy from 1994 to 1997. In total, about 100 000 charged-current (CC) neutrino interactions with at least one identified muon were located in the emulsion target and fully reconstructed, using newly developed automated scanning systems. Charmed particles were searched for by a program recognizing particle decays. The observation of the decay in nuclear emulsion makes it possible to select a sample with very low background and minimal kinematical bias. In all, 2013 CC interactions with a charmed hadron candidate in the final state were selected and confirmed through visual inspection. The charm production rate induced by neutrinos relative to the CC cross-section is measured to be σ(νμN→μ−CX)/σ(CC)=(5.75 ± 0.32(stat)±0.30(syst))%. The charm production cross-section as a function of neutrino energy is also obtained. The results are in good agreement with previous measurements. The charm-quark hadronization produces the following charmed hadrons with relative fractions (in %): fD0=43.7±4.5, fΛc+=19.2±4.2, fD+=25.3±4.2 and fDs+=11.8±4.7.
Journal of Instrumentation | 2007
L. Arrabito; C. Bozza; S. Buontempo; L. Consiglio; M. Cozzi; N. D'Ambrosio; G. De Lellis; M. De Serio; F. Di Capua; D. Di Ferdinando; N. Di Marco; A. Ereditato; Luigi Salvatore Esposito; R A Fini; G. Giacomelli; M. Giorgini; G. Grella; M. Ieva; J. Janicskó Csáthy; F. Juget; I. Kreslo; Imad Baptiste Laktineh; K. Manai; G. Mandrioli; A. Marotta; P. Migliozzi; P. Monacelli; U. Moser; M.T. Muciaccia; A. Pastore
The OPERA experiment, designed to conclusively prove the existence of ????? oscillations in the atmospheric sector, makes use of a massive lead-nuclear emulsion target to observe the appearance of ??s in the CNGS ?? beam. The location and analysis of the neutrino interactions in quasi real-time required the development of fast computer-controlled microscopes able to reconstruct particle tracks with sub-micron precision and high efficiency at a speed of ~20 cm2/h. This paper describes the performance in particle track reconstruction of the European Scanning System, a novel automatic microscope for the measurement of emulsion films developed for OPERA.
Journal of Instrumentation | 2007
L Arrabito; D. Autiero; C. Bozza; S. Buontempo; Y. Caffari; L. Consiglio; M. Cozzi; N. D'Ambrosio; G. De Lellis; M. De Serio; F. Di Capua; D. Di Ferdinando; N. Di Marco; A. Ereditato; Luigi Salvatore Esposito; S Gagnebin; G. Giacomelli; M. Giorgini; G. Grella; M. Hauger; M. Ieva; J. Janicskó Csáthy; F. Juget; I. Kreslo; Imad Baptiste Laktineh; A. Longhin; G. Mandrioli; A. Marotta; J. Marteau; P. Migliozzi
We have studied the performance of a new algorithm for electron/pion separation in an Emulsion Cloud Chamber (ECC) made of lead and nuclear emulsion films. The software for separation consists of two parts: a shower reconstruction algorithm and a Neural Network that assigns to each reconstructed shower the probability to be an electron or a pion. The performance has been studied for the ECC of the OPERA experiment [1]. The e/π separation algorithm has been optimized by using a detailed Monte Carlo simulation of the ECC and tested on real data taken at CERN (pion beams) and at DESY (electron beams). The algorithm allows to achieve a 90% electron identification efficiency with a pion misidentification smaller than 1% for energies higher than 2 GeV.
Journal of Instrumentation | 2007
G. De Lellis; S. Buontempo; F. Di Capua; A. Marotta; P. Migliozzi; Y Petukhov; C. Pistillo; A Russo; L. Scotto Lavina; P. Strolin; V. Tioukov; T Toshito; A. Ariga; N. Naganawa; Yoshiya Furusawa; N. Yasuda
Beams of Carbon nuclei are used or planned to be used in various centers for cancer treatment around the world because of their therapeutic advantages over proton beams. The knowledge of the fragmentation of Carbon nuclei when they interact with the human body is important to evaluate the spatial profile of their energy deposition in the tissues, hence the damage to the tissues neighboring the tumor. In this respect, the identification of the fragmentation products is a key element. We present in this paper the charge measurement of about 3000 fragments produced by the interaction of 12C nuclei with an energy of 400 MeV/nucleon in a detector simulating the density of the human body. The nuclear emulsion technique is used, by means of the so-called Emulsion Cloud Chamber. In order to achieve the large dynamical range required for the charge measurement, the recently developed techniques of the emulsion controlled fading are used. The nuclear emulsions are inspected using fast automated microscopes recently developed. A charge assignment efficiency of more than 99% is achieved. The separation of Hydrogen, Helium, Lithium, Berillium, Boron and Carbon can be achieved at two standard deviations or considerably more, according to the track length available for the measurement.
Transplantation Proceedings | 2009
Michele Santangelo; M. Clemente; Sergio Spiezia; S. Grassia; F. Di Capua; C. La Tessa; M.G. Iovino; A. Vernillo; M. Galeotalanza
INTRODUCTION Impaired wound healing represents a common operative complication after kidney transplantation. This problem seems to be affected by factors related to surgical technique, drugs, and patient/graft peculiarities. PATIENTS AND METHODS From January 2000 to December 2007, 350 consecutive kidney transplantations were performed in a population of nondiabetic patients. We evaluated the influence of various factors on impaired wound healing. RESULTS Among 350 kidney transplantation patients, we observed 54 cases (15.43%) of impaired healing of the surgical incision: 36 (10.29%) with first level and 18 (5.14%) with second level wound complications. Factors related to complications were overweight and delayed graft function. Cyclosporine and tacrolimus had similar effects. However, all patients developing second level complications showed more risk factors. In our experience, postoperative lymphocele did not occur as an unique factor but became a significant risk factor when associated with another one. Patients who did not have reconstruction of the muscle layers showed a greater incidence of incisional complications. CONCLUSION Impaired healing of the surgical incision more or less seriously influenced outcomes of transplanted patients. This complication was common and usually related to the presence of more than one risk factor.
Physics Letters B | 2002
G. De Lellis; F. Di Capua; P. Migliozzi
Abstract The way a charm-quark fragments into a charmed hadron is a challenging problem both for the theoretical and the experimental particle physics. Moreover, in neutrino induced charm-production, peculiar processes occur such as quasi-elastic and diffractive charm-production which make the results from other experiments not directly comparable. We present here a method to extract the charmed fractions in neutrino induced events by using results from e + e − , πN , γN experiments while taking into account the peculiarities of charm-production in neutrino interactions. As results, we predict the fragmentation functions as a function of the neutrino energy and the semi-muonic branching ratio, B μ , and compare them with the available data.
Astroparticle Physics | 2015
Giancarlo Barbarino; F C T Barbato; L. Campajola; F. Canfora; R. de Asmundis; G. De Rosa; F. Di Capua; G. Fiorillo; P. Migliozzi; C.M. Mollo; B. Rossi; D. Vivolo
Abstract The VSiPMT (Vacuum Silicon PhotoMultiplier Tube) is an innovative design we proposed for a revolutionary photon detector. The main idea is to replace the classical dynode chain of a PMT with a SiPM (G-APD), the latter acting as an electron detector and amplifier. The aim is to match the large sensitive area of a photocathode with the performance of the SiPM technology. The VSiPMT has many attractive features. In particular, a low power consumption and an excellent photon counting capability. To prove the feasibility of the idea we first tested the performance of a special non-windowed SiPM by Hamamatsu (MPPC) as electron detector and current amplifier. Thanks to this result Hamamatsu realized two VSiPMT industrial prototypes. In this work, we present the results of a full characterization of the VSiPMT prototype.
European Physical Journal C | 2007
A. Kayis-Topaksu; G. Onengut; R. van Dantzig; M. de Jong; R.G.C. Oldeman; M. Guler; U. Köse; P. Tolun; M.G. Catanesi; M.T. Muciaccia; K. Winter; B. Van de Vyver; P. Vilain; G. Wilquet; B. Saitta; E. Di Capua; S. Ogawa; H. Shibuya; I.R. Hristova; T. Kawamura; D. Kolev; H. Meinhard; J. Panman; A. Rozanov; R. Tsenov; J.W.E. Uiterwijk; P. Zucchelli; J. Goldberg; M. Chikawa; J.S. Song
The CHORUS experiment, designed to search for νμ→ντ oscillations, consists of a nuclear emulsion target and electronic detectors. In this paper, results on the production of charged particles in a small sample of charged-current neutrino– and anti-neutrino–nucleus interactions at high energy are presented. For each event, the emission angle and the ionization features of the charged particles produced in the interaction are recorded, while the standard kinematic variables are reconstructed using the electronic detectors. The average multiplicities for charged tracks, the pseudo-rapidity distributions, the dispersion in the multiplicity of charged particles and the KNO scaling are studied in different kinematical regions. A study of quasi-elastic topologies performed for the first time in nuclear emulsions is also reported. The results are presented in a form suitable for use in the validation of Monte Carlo generators of neutrino–nucleus interactions.
Journal of Instrumentation | 2012
Behcet Alpat; E. Pilicer; L. Servoli; M. Menichelli; P. Tucceri; M. Italiani; E Buono; F. Di Capua
In this work we present the results of full Geant4 and FLUKA simulations and comparison with dosimetry data of an electron LINAC of St. Maria Hospital located in Terni, Italy. The facility is being used primarily for radiotherapy and the goal of the present study is the detailed investigation of electron beam parameters to evaluate the possibility to use the e-LINAC (during time slots when it is not used for radiotherapy) to test the performance of detector systems, in particular those designed to operate in space. The critical beam parameters are electron energy, profile and flux available at the surface of device to be tested. The present work aims to extract these parameters from dosimetry calibration data available at the e-LINAC. The electron energy ranges from 4 MeV to 20 MeV. The dose measurements have been performed by using an Advanced Markus Chamber which has a small sensitive volume.