F. G. Basso
State University of Campinas
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by F. G. Basso.
Laser Physics | 2010
Christophe Oliveira; F. G. Basso; Emery C. Lins; Cristina Kurachi; Josimeri Hebling; V. S. Bagnato; C. A. de Souza Costa
Studies have shown that the increase of cell metabolism depends on the low level laser therapy (LLLT) parameters used to irradiate the cells. However, the optimal laser dose to up-regulate pulp cell activity remains unknown. Consequently, the aim of this study was to evaluate the metabolic response of odontoblast-like cells (MDPC-23) exposed to different LLLT doses. Cells at 20000 cells/cm2 were seeded in 24-well plates using plain culture medium (DMEM) and were incubated in a humidified incubator with 5% CO2 at 37°C. After 24 h, the culture medium was replaced by fresh DMEM supplemented with 5% (stress by nutritional deficit) or 10% fetal bovine serum (FBS). The cells were exposed to different laser doses from a near infrared diode laser prototype designed to provide a uniform irradiation of the wells. The experimental groups were: G1: 1.5 J/cm2 + 5% FBS; G2: 1.5 J/cm2 + 10% FBS; G3: 5 J/cm2 + 5% FBS; G4: 5 J/cm2 + 10% FBS; G5: 19 J/cm2 + 5% FBS; G6: 19 J/cm2 + 10% FBS. LLLT was performed in 3 consecutive irradiation cycles with a 24-hour interval. Non-irradiated cells cultured in DMEM supplemented with either 5 or 10% FBS served as control groups. The analysis of the metabolic response was performed by the MTT assay 3 h after the last irradiation. G1 presented an increase in SDH enzyme activity and differed significantly (Mann-Whitney test, p < 0.05) from the other groups. Analysis by scanning electron microscopy showed normal cell morphology in all groups. Under the tested conditions, LLLT stimulated the metabolic activity of MDPC-23 cultured in DMEM supplemented with 5% FBS and exposed to a laser dose of 1.5 J/cm2. These findings are relevant for further studies on the action of near infrared lasers on cells with odontoblast phenotype.
Supportive Care in Cancer | 2009
F. G. Basso; Camila Cominato Boer; Maria Elvira Pizzigatti Correa; Marcia Torrezan; Maria Letícia Cintra; Marina Helena Cury Gallottini de Magalhães; Paulo Sérgio da Silva Santos; Carmino Antonio de Souza
IntroductionImatinib mesylate is a tyrosine kinase inhibitor used to treat chronic myeloid leukemia (CML) throughout all the phases of the disease. In most cases, this drug is well tolerated; however, some cases experience side effects.Results and discussionSkin rashes and oral lesions are uncommon and appear to be dose-dependent. The authors report two cases of CML Ph+ in chronic phase patients who presented skin and oral lesions probably induced by imatinib therapy.
Journal of Dentistry | 2014
Diana Gabriela Soares; F. G. Basso; Elaine Cristina Voltolini Pontes; Lucas da Fonseca Roberti Garcia; Josimeri Hebling; Carlos Alberto de Souza Costa
OBJECTIVES To evaluate the effects of experimental protocols on bleaching effectiveness and hydrogen peroxide (HP) diffusion through enamel and dentine. METHODS Enamel/dentine discs were subjected to six bleaching sessions, consisting of 1 or 3 applications of 17.5% or 35%-HP gel for 5/15min, or 37% carbamide peroxide (CP) gel for 10/20min. Discs undergoing the regular protocol (35%-HP; 3×15min) constituted the positive control group. Colour change (ΔE) was assessed (CIE L*a*b* system) after each session. HP diffusion was quantified (sessions 1, 3, and 6) in enamel/dentine discs adapted to artificial pulp chambers. Data were analysed by Pillais Trace and Bonferroni test, or by one-way ANOVA and SNK/Tamhanes test (α=5%). RESULTS All tooth-bleaching protocols significantly increased the ΔE values. A reduction in HP diffusion and no significant difference in ΔE compared with the positive control were observed for the following bleaching protocols: 17.5%-HP 3×15min, at the 4th session; and 35%-HP 1×15 and 3×5min, at the 5th session. HP diffusion in the 37%-CP 3×20min bleaching protocol was statistically similar to that in the positive control. The other experimental bleaching protocols significantly decreased HP diffusion through enamel/dentine discs, but the ΔE values were statistically lower than those observed in the positive control, in all sessions. CONCLUSION Shortening the contact time of a 35%-HP gel or reducing its concentration produces gradual tooth colour change and reduced HP diffusion through enamel and dentine. CLINICAL SIGNIFICANCE A reduction in HP concentration, from 35% to 17.5%, in a bleaching gel or shortening its application time on enamel provides a significant tooth-bleaching improvement associated with decreased HP diffusion across hard dental tissues. Therefore, these protocols may be an interesting alternative to be tested in the clinical situation.
Brazilian Dental Journal | 2011
F. G. Basso; Camila F. Oliveira; Amanda Fontana; Cristina Kurachi; Vanderlei Salvador Bagnato; Denise Madalena Palomari Spolidorio; Josimeri Hebling; Carlos Alberto de Souza Costa
The aim of this study was to evaluate the effect of specific parameters of low-level laser therapy (LLLT) on biofilms formed by Streptococcus mutans, Candida albicans or an association of both species. Single and dual-species biofilms--SSB and DSB--were exposed to laser doses of 5, 10 or 20 J/cm(2) from a near infrared InGaAsP diode laser prototype (LASERTable; 780 ± 3 nm, 0.04 W). After irradiation, the analysis of biobilm viability (MTT assay), biofilm growth (cfu/mL) and cell morphology (SEM) showed that LLLT reduced cell viability as well as the growth of biofilms. The response of S. mutans (SSB) to irradiation was similar for all laser doses and the biofilm growth was dose dependent. However, when associated with C. albicans (DSB), S. mutans was resistant to LLLT. For C. albicans, the association with S. mutans (DSB) caused a significant decrease in biofilm growth in a dose-dependent fashion. The morphology of the microorganisms in the SSB was not altered by LLLT, while the association of microbial species (DSB) promoted a reduction in the formation of C. albicans hyphae. LLLT had an inhibitory effect on the microorganisms, and this capacity can be altered according to the interactions between different microbial species.
Archives of Oral Biology | 2013
F. G. Basso; Ana Paula Silveira Turrioni; C. A. de Souza Costa
The aim of the study was to evaluate the effects of a highly potent bisphosphonate, zoledronic acid (ZOL), on cultured odontoblast-like cells MDPC-23. The cells (1.5×10(4)cells/cm(2)) were seeded for 48h in wells of 24-well dished. Then, the plain culture medium (DMEM) was replaced by fresh medium without fetal bovine serum. After 24h, ZOL (1 or 5μM) was added to the medium and maintained in contact with the cells for 24h. After this period, the succinic dehydrogenase (SDH) enzyme production (cell viability - MTT assay), total protein (TP) production, alkaline phosphatase (ALP) activity, and gene expression (qPCR) of collagen type I (Col-I) and ALP were evaluated. Cell morphology was assessed by SEM. Five μM ZOL caused a significant decrease in SDH production. Both ZOL concentrations caused a dose-dependent significant decrease in TP production and ALP activity. ZOL also produced discret morphological alterations in the MDPC-23 cells. Regarding gene expression, 1μM ZOL caused a significant increase in Col-I expression. Although 5μM ZOL did not affect Col-I expression, it caused a significant alteration in ALP expression (ANOVA and Tukeys test, p<0.05). ZOL presented a dose-dependent cytotoxic effect on the odontoblast-like cells, suggesting that under clinical conditions the release of this drug from dentin could cause damage to the pulpo-dentin complex.
Operative Dentistry | 2015
Ana Paula Silveira Turrioni; F. G. Basso; J.R.L. Alonso; C. F. de Oliveira; V. S. Bagnato; C. A. de Souza Costa
OBJECTIVE The aim of this study was to investigate the effects of transdentinal irradiation with different light-emitting diode (LED) parameters on odontoblast-like cells (MDPC-23). METHODS AND MATERIALS Human dentin discs (0.2 mm thick) were obtained, and cells were seeded on their pulp surfaces with complete culture medium (Dulbecco modified Eagle medium). Discs were irradiated from the occlusal surfaces with LED at different wavelengths (450, 630, and 840 nm) and energy densities (0, 4, and 25 J/cm(2)). Cell viability (methyltetrazolium assay), alkaline phosphatase activity (ALP), total protein synthesis (TP), and cell morphology (scanning electron microscopy) were evaluated. Gene expression of collagen type I (Col-I) was analyzed by quantitative polymerase chain reaction (PCR). Data were analyzed by the Mann-Whitney test with a 5% significance level. RESULTS Higher cell viability (21.8%) occurred when the cells were irradiated with 630 nm LED at 25 J/cm(2). Concerning TP, no statistically significant difference was observed between irradiated and control groups. A significant increase in ALP activity was observed for all tested LED parameters, except for 450 nm at 4 J/cm(2). Quantitative PCR showed a higher expression of Col-I by the cells subjected to infrared LED irradiation at 4 J/cm(2). More attached cells were observed on dentin discs subjected to irradiation at 25 J/cm(2) than at 4 J/cm(2). CONCLUSION The infrared LED irradiation at an energy density of 4 J/cm(2) and red LED at an energy density of 25 J/cm(2) were the most effective parameters for transdentinal photobiomodulation of cultured odontoblast-like cells.
Laser Physics | 2013
C F Oliveira; F. G. Basso; R I dos Reis; Lucas T. Parreiras-e-Silva; E. C. Lins; Cristina Kurachi; V. S. Bagnato; C. A. de Souza Costa
Low-level laser therapy (LLLT) has been used for the treatment of dentinal hypersensitivity. However, the specific LLL dose and the response mechanisms of these cells to transdentinal irradiation have not yet been demonstrated. Therefore, this study evaluated the transdentinal effects of different LLL doses on stressed odontoblast-like pulp cells MDPC-23 seeded onto the pulpal side of dentin discs obtained from human third molars. The discs were placed in devices simulating in vitro pulp chambers and the whole set was placed in 24-well plates containing plain culture medium (DMEM). After 24 h incubation, the culture medium was replaced by fresh DMEM supplemented with either 5% (simulating a nutritional stress condition) or 10% fetal bovine serum (FBS). The cells were irradiated with doses of 15 and 25 J cm−2 every 24 h, totaling three applications over three consecutive days. The cells in the control groups were removed from the incubator for the same times as used in their respective experimental groups for irradiation, though without activating the laser source (sham irradiation). After 72 h of the last active or sham irradiation, the cells were evaluated with respect to succinic dehydrogenase (SDH) enzyme production (MTT assay), total protein (TP) expression, alkaline phosphatase (ALP) synthesis, reverse transcriptase polymerase chain reaction (RT-PCR) for collagen type 1 (Col-I) and ALP, and morphology (SEM). For both tests, significantly higher values were obtained for the 25 J cm−2 dose. Regarding SDH production, supplementation of the culture medium with 5% FBS provided better results. For TP and ALP expression, the 25 J cm−2 presented higher values, especially for the 5% FBS concentration (Mann–Whitney p < 0.05). Under the tested conditions, near infrared laser irradiation at 25 J cm−2 caused transdentinal biostimulation of odontoblast-like MDPC-23 cells.
Photochemistry and Photobiology | 2014
Adriano Fonseca Lima; F. G. Basso; Ana Paula Dias Ribeiro; Vanderlei Salvador Bagnato; Josimeri Hebling; Giselle Maria Marchi; Carlos Alberto de Souza Costa
The aim of this study was to evaluate the effect of low‐level laser therapy (LLLT) on odontoblast‐like cells exposed to a bleaching agent. Mouse dental papilla cell‐23 cells were seeded in wells of 24‐well plates. Eight groups were established according to the exposure to the bleaching agent and LLLT (0, 4, 10 and 15 J cm−2). Enamel–dentin disks were adapted to artificial pulp chambers, which were individually placed in wells containing Dulbeccos modified Eagles medium (DMEM). A bleaching agent (35% hydrogen peroxide [BA35%HP]) was applied on enamel (15 min) to obtain the extracts (DMEM + BA35%HP components diffused through enamel/dentin disks). The extracts were applied (1 h) to the cells, and then subjected to LLLT. Cell viability (Methyl tetrazolium assay), alkaline phosphatase (ALP) activity, as well as gene expression of ALP, fibronectin (FN) and type I collagen, were evaluated. The bleaching procedures reduced the cell viability, ALP activity and gene expression of dentin proteins. Laser irradiation did not modulate the cell response; except for FN, as LLLT decreased the gene expression of this protein by the cells exposed to the BA35%HP. It can be concluded that BA35%HP decreased the activities of odontoblasts that were not recovered by the irradiation of the damaged cells with low‐level laser parameters tested.
Laser Physics | 2013
F. G. Basso; Taisa Nogueira Pansani; Ana Paula Silveira Turrioni; Cristina Kurachi; V. S. Bagnato; C. A. de Souza Costa
Low-level laser therapy (LLLT) has been considered as an adjuvant treatment for bisphosphonate-related osteonecrosis, presenting positive clinical outcomes. However, there are no data regarding the effect of LLLT on oral tissue cells exposed to bisphosphonates. This study aimed to evaluate the effects of LLLT on epithelial cells and gingival fibroblasts exposed to a nitrogen-containing bisphosphonate—zoledronic acid (ZA). Cells were seeded in wells of 24-well plates, incubated for 48 h and then exposed to ZA at 5 μM for an additional 48 h. LLLT was performed with a diode laser prototype—LaserTABLE (InGaAsP—780 nm ± 3 nm, 25 mW), at selected energy doses of 0.5, 1.5, 3, 5, and 7 J cm−2 in three irradiation sessions, every 24 h. Cell metabolism, total protein production, gene expression of vascular endothelial growth factor (VEGF) and collagen type I (Col-I), and cell morphology were evaluated 24 h after the last irradiation. Data were statistically analyzed by Kruskal–Wallis and Mann–Whitney tests at 5% significance. Selected LLLT parameters increased the functions of epithelial cells and gingival fibroblasts treated with ZA. Gene expression of VEGF and Col-I was also increased. Specific parameters of LLLT biostimulated fibroblasts and epithelial cells treated with ZA. Analysis of these in vitro data may explain the positive in vivo effects of LLLT applied to osteonecrosis lesions.
Journal of Photochemistry and Photobiology B-biology | 2016
F. G. Basso; Ana Paula Silveira Turrioni; Leopoldina de Fátima Dantas de Almeida; D.G. Soares; C.F. Oliveira; C.A. de Souza Costa
Previous studies have demonstrated that high biostimulation takes place when cells under stress are subjected to phototherapy by laser or light-emitting-diode (LED) devices. Several studies selected nutritional deprivation by reducing the concentration of fetal bovine serum (FBS) in the culture medium or the exposure of cultured cells to lipopolysaccharide (LPS) as an in vitro cellular stress condition. However, there are no data certifying that these stimuli cause stressful conditions for cultured cells. This investigation assessed the induction of cellular stress by decreasing the concentration of FBS or adding LPS to culture medium. Odontoblast-like cells (MDPC-23) were cultured in complete culture medium (DMEM) containing 10% FBS. After a 12-hour incubation period, the DMEM was replaced by fresh medium containing 10% FBS (control), low concentrations of FBS (0, 0.2, 0.5, 2, or 5%) or LPS from Escherichia coli (10μg/ml). After an additional 12-hour incubation, cell viability, total cell-counting, total protein production, and gene expression of heat shock protein 70 (HSP70) were assessed. Data were statistically analyzed by ANOVA complemented by the Tukey test, with 5% considered significant. Cell viability was negatively affected only for 0% FBS, while reduced viable cell numbers and total protein production were detected for FBS concentrations lower than 2%. Higher HSP70 gene expression was also observed for FBS concentrations lower than 2% and for cells exposed to LPS. The nutritional deprivation model with culture medium lower than 2% of FBS can be safely used to induce cellular stress for in vitro photobiomodulation studies.