F. Gandolfi
University of Milan
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by F. Gandolfi.
Biology of Reproduction | 2002
Claude Robert; Serge McGraw; Lyne Massicotte; Marco Pravetoni; F. Gandolfi; Marc-André Sirard
Abstract In mammals, the study of gene expression in the preimplantation embryo has been difficult because the standard procedures used to quantify mRNA generally require large amounts of starting material. The development of protocols using different quantitative strategies generally involving the polymerase chain reaction (PCR) has provided new tools for exploration of gene expression in preimplantation embryos. However, the use of an internal standard, often referred as a housekeeping gene, is essential to normalize the mRNA levels. RNA levels of eight housekeeping genes were quantified using real time PCR throughout the preimplantation period of the bovine embryo to find the most suitable gene to be used as standard. Histone H2a was the best internal standard because the transcript levels were constant across the preimplantation period. Linear amplification of antisense RNA using the T7 promotor for in vitro transcription of the entire RNA pool was evaluated as a suitable way to preamplify the starting material prior to quantification and was effective in providing accurate RNA abundance profiles throughout the preimplantation period. However, the amplification appears to be template dependent because the amplification factors were higher for some genes.
Theriogenology | 2001
T.A.L. Brevini Gandolfi; F. Gandolfi
RNA molecules and proteins are accumulated in the oocyte cytoplasm during its growth phase and are used to sustain the early phases of embryonic development before embryo DNA transcription begins. This makes the oocyte a very special cell, quite different from somatic cells where RNA and proteins usually undergo a rapid turnover. To enable the storage and timely use of such stored molecules, various mechanisms are effective in the oocyte and are gradually being elucidated. Our understanding of such mechanisms is important for constantly improving therapy for human and animal reproductive disorders as well as for understanding the process of nuclear reprogramming during cloning procedure or stem cell generation. This review focuses on the various aspects of these regulatory processes in an attempt to give an overview of the present knowledge on post-transcriptional and post-translational mechanisms taking place during oocyte maturation and early development. Mechanisms such as cytoplasmic regulation of the poly(A) tail, RNA localization and protein phosphorylation are described in some detail. Because most data are available from lower species these are presented together with appropriate reference to the mammalian oocyte when data are known, or when important differences have been described.
Reproduction | 2007
F. Cillo; Tiziana A. L. Brevini; Stefania Antonini; Alessio Paffoni; Guido Ragni; F. Gandolfi
At present, oocyte selection is mainly based upon morphological criteria but it is generally acknowledged that its reliability requires further improvement. The aim of this study was to determine whether transcript levels in cumulus cells can provide a useful marker of oocyte developmental competence in vitro. A retrospective study was performed on cumulus cells isolated from 90 oocytes retrieved from 45 patients. Upon fertilization, 35 oocytes originated good-quality embryos and 36 developed into poor-quality embryos, whereas 19 failed to be fertilized. Semi-quantitative measurement of hyaluronic acid synthase 2 (HAS2), gremlin1 (GREM1), and pentraxin 3 (PTX3) mRNAs was performed and data for all genes were obtained from all the samples. Cumulus cells isolated from oocytes that originated high-quality embryos on day 3 of culture had HAS2 and GREM1 transcript levels higher than those detected in cells from oocytes that did not fertilize or developed into poor-quality embryos. No differences were observed in PTX3 levels. Results indicate that the measurement of HAS2 and GREM1 levels in cumulus cells would reliably complement the morphological evaluation providing a useful tool for selecting oocytes with greater chances to be fertilized and develop in vitro.
Biology of Reproduction | 2005
Tiziana A. L. Brevini; Rita Vassena; Chiara Francisci; F. Gandolfi
Abstract The purpose of this work was to determine the mechanisms regulating the acquisition of cytoplasmic maturation and embryonic developmental competence in pig oocytes. The presence or the absence of porcine follicular fluid (pff; 25% or 0%) in the maturation medium was used as a means to achieve complete nuclear maturation accompanied or not accompanied by cytoplasmic maturation. ATP content, active mitochondria relocation, and microtubule distribution were analyzed at different times during in vitro maturation (IVM). While nuclear maturation did not differ among the two groups, parthenogenetic embryonic development was significantly higher (41.5%) in the 25% pff group than in the 0% pff group (19.0%) with blastocysts that had a significantly higher number of blastomeres (76.1 ± 6.3, and 47.2 ± 6.5, respectively). Oocyte ATP content increased significantly during IVM, but at the end of maturation no significant differences were observed between high- and low-competence oocytes. An extensive relocation of mitochondria to the inner cytoplasm during IVM together with the formation of a well-developed mesh of cytoplasmic microtubules was observed only in the high-competence oocyte group. However, no differences in the formation of microtubules associated with the meiotic spindles were observed between high- and low-competence groups. We conclude that low developmental competence is associated with the lack of a microtubule cytoplasmic network, which prevents correct relocation of mitochondria and is likely to reflect a more generally altered compartmentalization of the ooplasm. This can be independent from the formation of the microtubule machinery required for the completion of chromosome disjunctions and does not affect the overall ATP content.
Molecular Reproduction and Development | 1999
Tiziana A.L. Brevini-Gandolfi; Laura A. Favetta; Luca Mauri; Alberto M. Luciano; F. Cillo; F. Gandolfi
Molecules of mRNA are stored in the oocyte cytoplasm in order to be used during the initial phases of embryonic development. The storage takes place during oocyte growth and the extent of poly(A) tail at the 3′ end of the transcripts has emerged as an important regulatory element for determining their stability. The objective of the present study was to analyse changes in polyadenylation levels of mRNA transcripts, stored in bovine oocytes, during in vitro maturation and their possible relation with developmental competence. Oocyte developmental competence was predicted on the basis of the morphological appearance of their originating ovary as previously established (Gandolfi et al. 1997a. Theriogenology 48:1153–1160) and were divided into groups H (high competence) and L (low competence). The length of the poly(A) tail of the following genes, β‐actin (β‐Act), connexin 43, glucose transporter type 1, heat shock protein 70, oct‐4, plakophilin, pyruvate dehydrogenase phosphatase (PDP), and RNA poly(A) polymerase, was determined at the germinal vesicle (GV) and metaphase II (MII) stage. The results indicated that the poly(A) tail of all genes except for β‐Act and PDP, is shorter after in vitro maturation (IVM) in both groups. Moreover, group L oocytes showed a shorter poly(A) tail than group H oocytes in all genes except for β‐Act and PDP, both at GV and MII stage. We conclude that most of the examined transcripts follow the default deadenylation pattern described during oocyte maturation in other species and that a shorter poly(A) tail is correlated with low developmental competence. Mol. Reprod. Dev. 52:427–433, 1999.
Biology of Reproduction | 2004
Alberto M. Luciano; S. Modina; Rita Vassena; Elisabetta Milanesi; A. Lauria; F. Gandolfi
Abstract The present study was designed to address the physiological role played by cAMP on gap junction (GJ) mediated communications between oocyte and cumulus cells during in vitro maturation. Cyclic AMP was stimulated by different collection and maturation media known to induce different rates of nuclear maturation and developmental competence as well as different levels of cumulus expansion. Cumulus-oocyte complexes (COCs) were matured for 0, 3, 7, 12, 18, and 24 h in the absence of stimulation or in the presence of serum and gonadotropins (fetal bovine serum+human menopausal gonadotropins [FCS+hMG]) or 0.01 μg/ml of invasive adenylate cyclase (iAC). For each time point, intracellular cAMP concentration ([cAMP]i) was determined either in the whole COC or oocyte after cumulus cell removal. GJ functional status was analyzed by microinjection of Lucifer yellow fluorescent dye in cumulus-enclosed oocytes and by immunohistochemical localization of connexin 43 (Cx43). In the absence of stimulation, [cAMP]i in COC and oocyte was lower than in other groups, and communications declined after 3 h of culture. In the FCS+hMG group, [cAMP]i increased significantly in COC, with a peak between 3 and 7 h that was temporally correlated with the beginning of the cumulus expansion process, which occurred only in this group and with the termination of the communications. COC matured in the presence of iAC showed a moderate increase of [cAMP]i during all of the maturation times as well as a prolongation of oocyte-cumulus cell communications. The immunohistochemical localization of Cx43 confirmed the delay in connexons protein turnover in iAC-treated COCs. Our results show that cumulus expansion and oocyte developmental competence are induced by different levels of cAMP and that its intracellular concentration may affect cell coupling between oocyte and cumulus cells. We hypothesize that the higher developmental competence of COCs matured in the presence of iAC could be achieved through a moderate increase of intracellular cAMP, which in turn determines a prolongation of communications between the two cell types.
Molecular Reproduction and Development | 1998
F. Gandolfi; Elisabetta Milanesi; Paola Pocar; Alberto M. Luciano; Tiziana A. L. Brevini; F. Acocella; A. Lauria; David T. Armstrong
To determine possible causes of reported differences between developmental competence of oocytes isolated from prepubertal (10‐ to 14‐week‐old calves) and adult cows, three parameters were analysed, comparatively, during in vitro maturation (IVM): (1) oocyte diameter, (2) oocyte energy metabolism, and (3) protein synthesis of oocytes and cumulus cells. Cumulus‐oocyte complexes were isolated from follicles of 3–5 mm in diameter in both age groups. Mean oocyte diameter was smaller (P < 0.02) in calves than in cows (118.04 ± 1.15 versus 122.83 ± 0.74 μm). During the first 3 hr of IVM, calf oocytes metabolised glutamine and pyruvate at lower rates than adult oocytes, but after 24 hr of culture, both molecules were metabolised at the same rate as for adult oocytes. A significant decrease in protein synthesis, as measured by [35S]methionine and [35S]cysteine incorporation was recorded after 9 hr of IVM in calf oocytes, while in adult oocytes a significant decrease in protein synthesis was detected only after 24 hr. After the first 3 hr of maturation, proteins of 130, 26, and 24 kDa were more abundant in adult than in calf oocytes, while a protein of 55 kDa was more visible in calf than in adult oocytes. At the same time, among proteins newly synthesised by cumulus cells, molecules of 405, 146, 101, and 77 kDa were more abundant in adults than in calves.
Molecular Reproduction and Development | 1999
Alberto M. Luciano; Paola Pocar; Elisabetta Milanesi; S. Modina; D. Rieger; A. Lauria; F. Gandolfi
Serum, gonadotrophins, growth factors, and steroid hormones stimulate the in vitro maturation (IVM) of competent oocytes, acting, directly or indirectly, upon the adenylate cyclase pathway to produce the intracellular messenger, cAMP. The intracellular levels of cAMP in cattle cumulus‐oocyte complexes (COC) were manipulated by adding to the collection and maturation media invasive adenylate cyclase (iAC), a toxin produced by the bacterium, Bordetella pertussis. High concentrations of iAC (1 or 5 μg/ml) in the maturation medium inhibited the resumption of meiosis, while low concentrations (0.1 or 0.01 μg/ml) resulted in high rates of maturation to the MII stage (92.6 ± 2.5 and 98.5 ± 1.4% respectively). The same low concentrations of iAC in the maturation medium resulted in rates of development to the blastocyst stage 8 days post insemination (30.1 ± 4.2 and 45.1 ± 3.9%, respectively), which were either not different, or significantly better, than those obtained after IVM in medium supplemented only with serum and gonadotrophins (36.1 ± 2.9%). Finally, the addition of 0.1 μg/ml iAC and 0.5 mM 3‐isobutyl 1‐methylxanthine (IBMX) in the collection medium significantly improved the blastocyst rate when IVM was performed in control medium or medium supplemented with 0.01 μg/ml iAC (31.9 ± 5.5 vs. 12.1 ± 1.6 and 45.5 ± 2.9 vs. 19.1 ± 2.3% respectively). It is concluded that the maintenance of an optimal intracellular concentration of cAMP before and during IVM ensures a high developmental competence of bovine oocytes matured in medium without serum and hormones. Mol. Reprod. Dev. 54:86–91,1999.
Molecular Reproduction and Development | 1997
Louise J. Edwards; P.A. Batt; F. Gandolfi; David K. Gardner
Co‐culture remains a common method to support the development of bovine embryos, derived from IVM/IVF procedures. However, the mechanism by which somatic cells confer their benefit to the developing embryo remains undetermined. This study therefore analysed the changes made to the culture medium TCM‐199, used in bovine embryo co‐culture systems, by somatic cells and determined the effects of specific changes in medium composition on bovine embryo development in culture. Bovine oviduct epithelial (BOE), Buffalo rat liver (BRL) and fibroblast (3T3) cells were compared. The concentrations of glucose, L‐lactate, pyruvate, amino acids, NH4+, H+ and the gas tensions of O2 and CO2 were measured in TCM‐199 supplemented with 10% fetal calf serum (FCS) prior to and directly following 48 h incubation periods with each cell type. All three somatic cell types modified the carbohydrate composition of the media in a similar manner with the greatest changes made by the BOE cells. Notable alterations were an increase in the levels of L‐lactate and pyruvate and a reduction in glucose concentration, which in the case of the BOE cells, fell from 5.55 mM to 2.67 mM. In order to determine the relevance of such changes in carbohydrate concentrations on bovine embryo development, modifications were made to carbohydrate levels in synthetic oviduct fluid (SOF) medium and their effect on blastocyst development in vitro assessed. In SOF medium supplemented with amino acids and BSA (SOFaa), significantly more zygotes developed to the blastocyst stage (64%; P < 0.01) than in SOFaa medium with the concentrations of glucose, D/L‐lactate and pyruvate equivalent to those in TCM‐199 (11%). Interestingly, when the levels of carbohydrates in SOFaa mimicked those present in TCM‐199 following a 48 h incubation with BOE cells, 57% of zygotes reached the blastocyst stage. This improvement was ascribed to the reduction in glucose and increases in D/L‐lactate and pyruvate concentrations in the culture system. Results from this study demonstrate that BOE cells create an environment favourable to embryonic development.
Theriogenology | 1997
F. Gandolfi; Alberto M. Luciano; S. Modina; A. Ponzini; Paola Pocar; David T. Armstrong; A. Lauria
This study was designed to assess whether the developmental potential of bovine cumulus-oocyte complexes (COCs) could be related to the morphology of their originating ovary, providing a simple, noninvasive and objective selection criterion. Ovaries were divided into 3 categories on the basis of: A) presence of a follicle > 10 mm in diameter, B) presence of more than 10 follicles of 2 to 5 mm in diameter and no follicles > 10 mm, and C) presence of less than 10 follicles of 2 to 5 mm in diameter and no follicles > 10 mm. The COCs, isolated from ovaries of Category C, showed lower rates of maturation and blastocyst formation than those from Categories A and B. Moreover, blastocysts derived from Category C ovaries had fewer cells than those derived from the other 2 categories. It is concluded that ovarian morphology is a simple and noninvasive parameter for an effective selection of oocytes with better developmental competence.