Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Stefania Antonini is active.

Publication


Featured researches published by Stefania Antonini.


Science Translational Medicine | 2012

Transplantation of Genetically Corrected Human iPSC-Derived Progenitors in Mice with Limb-Girdle Muscular Dystrophy

Francesco Saverio Tedesco; Mattia F M Gerli; Laura Perani; Sara Benedetti; Federica Ungaro; Marco Cassano; Stefania Antonini; Enrico Tagliafico; Valentina Artusi; Emanuela Longa; Rossana Tonlorenzi; Martina Ragazzi; Giorgia Calderazzi; Hidetoshi Hoshiya; Ornella Cappellari; Marina Mora; Benedikt Schoser; Peter Schneiderat; Mitsuo Oshimura; Roberto Bottinelli; Maurilio Sampaolesi; Yvan Torrente; Vania Broccoli; Giulio Cossu

Genetically corrected mesoangioblasts from human iPSCs derived from limb-girdle muscular dystrophy patients produce muscle fibers expressing the therapeutic gene in a mouse model of the disease. Muscle Progenitors Find Their Way Home Muscular dystrophies are genetic disorders primarily affecting skeletal muscle that result in greatly impaired mobility and, in severe cases, respiratory and cardiac dysfunction. There is no effective treatment, although several new approaches are entering clinical testing including cell therapy. Cell therapy aims to replace lost muscle fibers by transplanting healthy donor muscle progenitor cells or cells from dystrophic patients that have been genetically corrected in vitro. Mesoangioblasts are progenitor cells from blood vessel walls that have shown potential as a cell therapy in animal models of muscular dystrophy. In a new study, Tedesco et al. explore whether genetically corrected mesoangioblasts from patients with limb-girdle muscular dystrophy 2D (LGMD2D) have potential as an autologous cell therapy to treat this disease. The authors quickly found that they could not derive a sufficient number of mesoangioblasts from LGMD2D patients because the muscles of the patients were depleted of these progenitor cells. To overcome this problem, the authors reprogrammed fibroblasts or myoblasts from the LGMD2D patients to obtain human induced pluripotent stem cells (iPSCs) and induced them to differentiate into mesoangioblast-like cells that were then genetically corrected in vitro using a viral vector expressing the defective gene SGCA, which encodes α-sarcoglycan. After intramuscular or intra-arterial injection of these genetically corrected, iPSC-derived mesoangioblasts into mice with LGMD2D (immune-deficient Sgca-null mice), the cells homed to damaged mouse skeletal muscle, engrafted, and formed muscle fibers expressing α-sarcoglycan. Using mouse iPSC-derived mesoangioblasts, the researchers showed that the transplanted engrafted cells imbued muscle with greater strength and enabled the dystrophic mice to run for longer on a treadmill than dystrophic mice that did not receive the cells. This strategy offers the advantage of being able to produce unlimited numbers of genetically corrected progenitor cells, which perhaps could be used in the future as cell therapy for treating LGMD2D and other forms of muscular dystrophy. Mesoangioblasts are stem/progenitor cells derived from a subset of pericytes found in muscle that express alkaline phosphatase. They have been shown to ameliorate the disease phenotypes of different animal models of muscular dystrophy and are now undergoing clinical testing in children affected by Duchenne’s muscular dystrophy. Here, we show that patients with a related disease, limb-girdle muscular dystrophy 2D (LGMD2D), which is caused by mutations in the gene encoding α-sarcoglycan, have reduced numbers of this pericyte subset and thus produce too few mesoangioblasts for use in autologous cell therapy. Hence, we reprogrammed fibroblasts and myoblasts from LGMD2D patients to generate human induced pluripotent stem cells (iPSCs) and developed a protocol for the derivation of mesoangioblast-like cells from these iPSCs. The iPSC-derived mesoangioblasts were expanded and genetically corrected in vitro with a lentiviral vector carrying the gene encoding human α-sarcoglycan and a promoter that would ensure expression only in striated muscle. When these genetically corrected human iPSC-derived mesoangioblasts were transplanted into α-sarcoglycan–null immunodeficient mice, they generated muscle fibers that expressed α-sarcoglycan. Finally, transplantation of mouse iPSC-derived mesoangioblasts into α-sarcoglycan–null immunodeficient mice resulted in functional amelioration of the dystrophic phenotype and restoration of the depleted progenitors. These findings suggest that transplantation of genetically corrected mesoangioblast-like cells generated from iPSCs from LGMD2D patients may be useful for treating this type of muscular dystrophy and perhaps other forms of muscular dystrophy as well.


Reproduction | 2007

Association between human oocyte developmental competence and expression levels of some cumulus genes

F. Cillo; Tiziana A. L. Brevini; Stefania Antonini; Alessio Paffoni; Guido Ragni; F. Gandolfi

At present, oocyte selection is mainly based upon morphological criteria but it is generally acknowledged that its reliability requires further improvement. The aim of this study was to determine whether transcript levels in cumulus cells can provide a useful marker of oocyte developmental competence in vitro. A retrospective study was performed on cumulus cells isolated from 90 oocytes retrieved from 45 patients. Upon fertilization, 35 oocytes originated good-quality embryos and 36 developed into poor-quality embryos, whereas 19 failed to be fertilized. Semi-quantitative measurement of hyaluronic acid synthase 2 (HAS2), gremlin1 (GREM1), and pentraxin 3 (PTX3) mRNAs was performed and data for all genes were obtained from all the samples. Cumulus cells isolated from oocytes that originated high-quality embryos on day 3 of culture had HAS2 and GREM1 transcript levels higher than those detected in cells from oocytes that did not fertilize or developed into poor-quality embryos. No differences were observed in PTX3 levels. Results indicate that the measurement of HAS2 and GREM1 levels in cumulus cells would reliably complement the morphological evaluation providing a useful tool for selecting oocytes with greater chances to be fertilized and develop in vitro.


Science Translational Medicine | 2011

Stem Cell–Mediated Transfer of a Human Artificial Chromosome Ameliorates Muscular Dystrophy

Francesco Saverio Tedesco; Hidetoshi Hoshiya; Giuseppe D'Antona; Mattia F M Gerli; Graziella Messina; Stefania Antonini; Rossana Tonlorenzi; Sara Benedetti; Libera Berghella; Yvan Torrente; Yasuhiro Kazuki; Roberto Bottinelli; Mitsuo Oshimura; Giulio Cossu

Combining gene delivery using a human artificial chromosome with stem cell transplantation ameliorates muscular dystrophy in a mouse model. Stem Cells Muscle in on the Action The progressive muscle loss that is the hallmark of Duchenne muscular dystrophy (DMD) has proved very difficult to halt or reverse. Although the causative mutations of DMD were identified in the X-linked gene encoding dystrophin (a structural muscle protein) several decades ago, translating this genetic discovery into new treatments has been challenging. Most therapeutic strategies aim to use gene therapy to deliver the normal dystrophin gene to the dystrophic muscles of DMD patients. However, the dystrophin gene is too large to be carried by the viral vectors usually used in gene therapy and all muscles in the body would have to be injected with the vector and replacement gene. Now, Tedesco and colleagues combine stem cell therapy with a human artificial chromosome vector to overcome these two challenges in the mdx mouse model of DMD. This team had previously identified a blood vessel stem cell called “mesoangioblast” that has the dual talents of being able to cross blood vessel walls and to differentiate into a variety of mesodermal cell types including muscle cells. Would these stem cells be able to deliver a replacement dystrophin gene to dystrophic muscles in the mdx mouse? Predicting that they would, Tedesco and colleagues used a human artificial chromosome vector engineered to carry the entire normal human dystrophin gene including the regulatory regions. They transferred the vector and its large cargo into mesoangioblasts isolated from mdx mice; then they injected the corrected mesoangioblasts directly into the dystrophic skeletal muscles of recipient immune-deficient mdx mice (to prevent reaction against the human protein). The authors showed that the transplanted mesoangioblasts were able to engraft in dystrophic muscles, express normal dystrophin, and produce functional muscle fibers with amelioration of dystrophic pathology. They also found that the transplanted mesoangioblasts contributed to the muscle satellite cell pool, which produces new muscle cells under normal conditions. Next, the authors showed that if they injected the corrected mesoangioblasts into the arterial circulation of mdx mice, the cells were able to cross blood vessel walls, home to dystrophic muscles and graft contribute to the formation of new dystrophin-expressing myofibers. The authors then showed that mice receiving the mesoangioblast transplants showed reduced fiber fragility, increased force, and greater motor capacity on treadmill and freewheel tests. Although there are still technical and regulatory hurdles to be overcome before this strategy can be used in DMD patients, stem cell–mediated transfer of the normal dystrophin gene using a human artificial chromosome shows promise as a treatment for this tragic and ultimately fatal disease. In contrast to conventional gene therapy vectors, human artificial chromosomes (HACs) are episomal vectors that can carry large regions of the genome containing regulatory elements. So far, HACs have not been used as vectors in gene therapy for treating genetic disorders. Here, we report the amelioration of the dystrophic phenotype in the mdx mouse model of Duchenne muscular dystrophy (DMD) using a combination of HAC-mediated gene replacement and transplantation with blood vessel–associated stem cells (mesoangioblasts). We first genetically corrected mesoangioblasts from dystrophic mdx mice with a HAC vector containing the entire (2.4 Mb) human dystrophin genetic locus. Genetically corrected mesoangioblasts engrafted robustly and gave rise to many dystrophin-positive muscle fibers and muscle satellite cells in dystrophic mice, leading to morphological and functional amelioration of the phenotype that lasted for up to 8 months after transplantation. Thus, HAC-mediated gene transfer shows efficacy in a preclinical model of DMD and offers potential for future clinical translation.


Reproduction | 2008

Effects of pre-mating nutrition on mRNA levels of developmentally relevant genes in sheep oocytes and granulosa cells.

Laura Francesca Pisani; Stefania Antonini; Paola Pocar; Stefania Ferrari; Tiziana A. L. Brevini; Stewart M. Rhind; F. Gandolfi

The present study was designed to investigate the relationship between pre-mating nutrition and the relative amounts of a panel of developmentally relevant genes in ovine oocytes and granulosa cells. Cast age ewes were fed a ration providing 0.5x (0.5 M) or 1.5x (1.5 M) live weight maintenance requirements for 2 weeks before slaughter. The ewes were synchronized and superovulated with FSH and pregnant mares serum gonadotropin. At slaughter, oocytes and granulosa cells were aspirated from follicles >2 mm in diameter and the relative abundance of 8 and 17 transcripts in oocytes and granulosa cells respectively were analyzed by semi-quantitative RT-PCR. In the oocytes, no differences between groups were observed for five transcripts (GDF9, BMP15, c-kit, glucose transporter 1 (SLC2A1), and hexokinase 1), but a lower amount of glucose transporter 3 (SLC2A3), sodium/glucose cotransporter 1 (SLC5A1), and Na(+)/K(+) ATPase mRNAs was detected in the 0.5 M group. Increased expression of PTGS2, HAS2, and the leptin receptor long form was observed in granulosa cells from the 0.5 M group. No differences between groups were observed for the other transcripts (early growth response factor-1, estrogen receptor-alpha, LH and FSH receptors, gremlin 1, pentraxin 3, KIT ligand, glucose transporters 1, 3, and 8, IGF1, IGF1 receptor, leptin receptor, and tumor necrosis factor-stimulated gene 6). Expression of leptin and sodium/glucose cotransporter 1 was not detected in both groups. The present data indicate that pre-mating nutrition is associated with alteration in the mRNA content in oocytes and surrounding follicle cells in ewes, which may account for the reduced reproductive performance typical of ewes that are fed a restricted ration for a short period of time before mating.


Skeletal Muscle | 2012

Injectable polyethylene glycol-fibrinogen hydrogel adjuvant improves survival and differentiation of transplanted mesoangioblasts in acute and chronic skeletal-muscle degeneration

Claudia Fuoco; Maria Lavinia Salvatori; Antonella Biondo; Keren Shapira-Schweitzer; Sabrina Santoleri; Stefania Antonini; Sergio Bernardini; Francesco Saverio Tedesco; Stefano Cannata; Dror Seliktar; Giulio Cossu; Cesare Gargioli

BackgroundCell-transplantation therapies have attracted attention as treatments for skeletal-muscle disorders; however, such research has been severely limited by poor cell survival. Tissue engineering offers a potential solution to this problem by providing biomaterial adjuvants that improve survival and engraftment of donor cells.MethodsIn this study, we investigated the use of intra-muscular transplantation of mesoangioblasts (vessel-associated progenitor cells), delivered with an injectable hydrogel biomaterial directly into the tibialis anterior (TA) muscle of acutely injured or dystrophic mice. The hydrogel cell carrier, made from a polyethylene glycol-fibrinogen (PF) matrix, is polymerized in situ together with mesoangioblasts to form a resorbable cellularized implant.ResultsMice treated with PF and mesoangioblasts showed enhanced cell engraftment as a result of increased survival and differentiation compared with the same cell population injected in aqueous saline solution.ConclusionBoth PF and mesoangioblasts are currently undergoing separate clinical trials: their combined use may increase chances of efficacy for localized disorders of skeletal muscle.


Reproduction in Domestic Animals | 2008

Recent Progress in Embryonic Stem Cell Research and Its Application in Domestic Species

T. A. L. Brevini; Stefania Antonini; G Pennarossa; F. Gandolfi

Many reports described cell lines derived in domestic species, which presented several important features typical of embryonic stem cells (ESCs). Such features unfortunately did not include the capacity to generate germ-line chimeras, therefore limiting the possibility to use these cells as tools for the genetic manipulation. However, farm animal ESCs may still be useful for the generation of transgenic animals as usually have a self-renewal capacity more prolonged than normal primary cultures thus increasing the possibility to transform and select cells to be used as nucleus donors in cloning procedures. Farm animal ESCs may also be an excellent experimental model in pre-clinical trials, assessing the feasibility of cell therapy because of the close morphological and physiological resemblance to humans of species like the pig. However, the persistent lack of standard methods for the derivation, maintenance and characterization of ESCs in domestic species stimulated the search for alternatives. Embryonic germ cells may represent such an alternative. Indeed, these cells showed a higher plasticity than ESCs as contributed to embryonic development forming chimeric newborns but, as for ESCs, standardization is still far away and efficiency is very low. Recent results indicated spermatogonial stem cells as possible tools for germ-line genetic modifications with some proof of principle results already achieved. But, a real break through could arrive from the multipotent germ-line stem cells, virtually equivalent to ESC, derived from newborn and adult mouse testis.


Nature Communications | 2015

PW1/Peg3 expression regulates key properties that determine mesoangioblast stem cell competence

Chiara Bonfanti; Giuliana Rossi; Francesco Saverio Tedesco; Monica Giannotta; Sara Benedetti; Rossana Tonlorenzi; Stefania Antonini; Giovanna Marazzi; Elisabetta Dejana; David Sassoon; Giulio Cossu; Graziella Messina

Mesoangioblasts are vessel-associated progenitor cells that show therapeutic promise for the treatment of muscular dystrophy. Mesoangioblasts have the ability to undergo skeletal muscle differentiation and cross the blood vessel wall regardless of the developmental stage at which they are isolated. Here we show that PW1/Peg3 is expressed at high levels in mesoangioblasts obtained from mouse, dog and human tissues and its level of expression correlates with their myogenic competence. Silencing PW1/Peg3 markedly inhibits myogenic potential of mesoangioblasts in vitro through MyoD degradation. Moreover, lack of PW1/Peg3 abrogates mesoangioblast ability to cross the vessel wall and to engraft into damaged myofibres through the modulation of the junctional adhesion molecule-A. We conclude that PW1/Peg3 function is essential for conferring proper mesoangioblast competence and that the determination of PW1/Peg3 levels in human mesoangioblasts may serve as a biomarker to identify the best donor populations for therapeutic application in muscular dystrophies.


Circulation Research | 2013

Embryonic Stem Cell–Derived CD166 + Precursors Develop Into Fully Functional Sinoatrial-Like Cells

Angela Scavone; Daniela Capilupo; Nausicaa Mazzocchi; Alessia Crespi; Stefano Zoia; Giulia Campostrini; Annalisa Bucchi; Raffaella Milanesi; Mirko Baruscotti; Sara Benedetti; Stefania Antonini; Graziella Messina; Dario DiFrancesco; Andrea Barbuti

Rationale: A cell-based biological pacemaker is based on the differentiation of stem cells and the selection of a population displaying the molecular and functional properties of native sinoatrial node (SAN) cardiomyocytes. So far, such selection has been hampered by the lack of proper markers. CD166 is specifically but transiently expressed in the mouse heart tube and sinus venosus, the prospective SAN. Objective: We have explored the possibility of using CD166 expression for isolating SAN progenitors from differentiating embryonic stem cells. Methods and Results: We found that in embryonic day 10.5 mouse hearts, CD166 and HCN4, markers of the pacemaker tissue, are coexpressed. Sorting embryonic stem cells for CD166 expression at differentiation day 8 selects a population of pacemaker precursors. CD166+ cells express high levels of genes involved in SAN development (Tbx18, Tbx3, Isl-1, Shox2) and function (Cx30.2, HCN4, HCN1, CaV1.3) and low levels of ventricular genes (Cx43, Kv4.2, HCN2, Nkx2.5). In culture, CD166+ cells form an autorhythmic syncytium composed of cells morphologically similar to and with the electrophysiological properties of murine SAN myocytes. Isoproterenol increases (+57%) and acetylcholine decreases (−23%) the beating rate of CD166-selected cells, which express the &bgr;-adrenergic and muscarinic receptors. In cocultures, CD166-selected cells are able to pace neonatal ventricular myocytes at a rate faster than their own. Furthermore, CD166+ cells have lost pluripotency genes and do not form teratomas in vivo. Conclusions: We demonstrated for the first time the isolation of a nonteratogenic population of cardiac precursors able to mature and form a fully functional SAN-like tissue.


Stem Cell Reviews and Reports | 2009

Cell Lines Derived from Human Parthenogenetic Embryos Can Display Aberrant Centriole Distribution and Altered Expression Levels of Mitotic Spindle Check-point Transcripts

Tiziana A. L. Brevini; G. Pennarossa; Stefania Antonini; Alessio Paffoni; Gianluca Tettamanti; Tiziana Montemurro; Enrico Radaelli; Lorenza Lazzari; Paolo Rebulla; Eugenio Scanziani; Magda de Eguileor; Nissim Benvenisty; Guido Ragni; F. Gandolfi

Human parthenogenetic embryos have recently been proposed as an alternative, less controversial source of embryonic stem cell (ESC) lines; however many aspects related to the biology of parthenogenetic embryos and parthenogenetic derived cell lines still need to be elucidated. We present here results on human cell lines (HP1 and HP3) derived from blastocysts obtained by oocyte parthenogenetic activation. Cell lines showed typical ESC morphology, expressed Oct-4, Nanog, Sox-2, Rex-1, alkaline phosphatase, SSEA-4, TRA 1-81 and had high telomerase activity. Expression of genes specific for different embryonic germ layers was detected from HP cells differentiated upon embryoid body (EBs) formation. Furthermore, when cultured in appropriate conditions, HP cell lines were able to differentiate into mature cell types of the neural and hematopoietic lineages. However, the injection of undifferentiated HP cells in immunodeficient mice resulted either in poor differentiation or in tumour formation with the morphological characteristics of myofibrosarcomas. Further analysis of HP cells indicated aberrant levels of molecules related to spindle formation as well as the presence of an abnormal number of centrioles and autophagic activity. Our results confirm and extend the notion that human parthenogenetic stem cells can be derived and can differentiate in mature cell types, but also highlight the possibility that, alteration of the proliferation mechanisms may occur in these cells, suggesting great caution if a therapeutic use of this kind of stem cells is considered.


Reproduction | 2010

Development, embryonic genome activity and mitochondrial characteristics of bovine–pig inter-family nuclear transfer embryos

Irina Lagutina; Helena Fulka; Tiziana Angela Luisa Brevini; Stefania Antonini; Dario Brunetti; Silvia Colleoni; F. Gandolfi; Giovanna Lazzari; Josef Fulka; Cesare Galli

The best results of inter-species somatic cell nuclear transfer (iSCNT) in mammals were obtained using closely related species that can hybridise naturally. However, in the last years, many reports describing blastocyst development following iSCNT between species with distant taxonomical relations (inter-classes, inter-order and inter-family) have been published. This indicates that embryonic genome activation (EGA) in xeno-cytoplasm is possible, albeit very rarely. Using a bovine-pig (inter-family) iSCNT model, we studied the basic characteristics of EGA: expression and activity of RNA polymerase II (RNA Pol II), formation of nucleoli (as an indicator of RNA polymerase I (RNA Pol I) activity), expression of the key pluripotency gene NANOG and alteration of mitochondrial mass. In control embryos (obtained by IVF or iSCNT), EGA was characterised by RNA Pol II accumulation and massive production of poly-adenylated transcripts (detected with oligo dT probes) in blastomere nuclei, and formation of nucleoli as a result of RNA Pol I activity. Conversely, iSCNT embryos were characterised by the absence of accumulation and low activity of RNA Pol II and inability to form active mature nucleoli. Moreover, in iSCNT embryos, NANOG was not expressed, and mitochondria mass was significantly lower than in intra-species embryos. Finally, the complete developmental block at the 16-25-cell stage for pig-bovine iSCNT embryos and at the four-cell stage for bovine-pig iSCNT embryos strongly suggests that EGA is not taking place in iSCNT embryos. Thus, our experiments clearly demonstrate poor nucleus-cytoplasm compatibility between these animal species.

Collaboration


Dive into the Stefania Antonini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge