Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where F. Krauß is active.

Publication


Featured researches published by F. Krauß.


Nature Physics | 2016

Coincidence of a high-fluence blazar outburst with a PeV-energy neutrino event

M. Kadler; F. Krauß; K. Mannheim; R. Ojha; C. Müller; Robert Schulz; G. Anton; Wayne H. Baumgartner; T. Beuchert; S. Buson; B. Carpenter; T. Eberl; Philip G. Edwards; D. Eisenacher Glawion; D. Elsässer; N. Gehrels; C. Gräfe; Sergei Gulyaev; H. Hase; S. Horiuchi; C.W. James; A. Kappes; U. Katz; A. Kreikenbohm; M. Kreter; I. Kreykenbohm; M. Langejahn; K. Leiter; E. Litzinger; F. Longo

The IceCube neutrino telescope in the South Pole has observed several high-energy neutrinos of undetermined origin. Could the third detected PeV event be from blazar PKS B1424–418?


Astronomy and Astrophysics | 2014

TANAMI Blazars in the IceCube PeV Neutrino Fields

F. Krauß; M. Kadler; K. Mannheim; Robert Schulz; J. Trüstedt; J. Wilms; R. Ojha; E. Ros; G. Anton; Wayne H. Baumgartner; T. Beuchert; J. Blanchard; C. Bürkel; B. Carpenter; T. Eberl; Philip G. Edwards; D. Eisenacher; D. Elsässer; K. Fehn; U. Fritsch; N. Gehrels; C. Gräfe; C. Großberger; H. Hase; S. Horiuchi; C.W. James; A. Kappes; U. Katz; A. Kreikenbohm; I. Kreykenbohm

ABSTRACT The IceCube Collaboration has announced the discovery of a neutrino flux in excess of the atmospheric background. Due to thesteeply falling atmospheric background spectrum, events at PeV energies are most likely of extraterrestrial origin. We present themultiwavelength properties of the six radio brightest blazars positionally coincident with these events using contemporaneous data ofthe TANAMI blazar sample, including high-resolution images and spectral energy distributions. Assuming the X-ray to -ray emissionoriginates in the photoproduction of pions by accelerated protons, the integrated predicted neutrino luminosity of these sources is largeenough to explain the two detected PeV events. Key words. neutrinos – galaxies: active – quasars: general 1. Introduction The detection of neutrinos at PeV energies in excess of the at-mospheric background reported by the IceCube Collaboration(Aartsen et al. 2013; IceCube Collaboration 2013) has prompteda quest to identify their extraterrestrial sources. The two eventswith PeV energies (event 20, dubbed ‘Ernie’ and event 14,‘Bert’, hereafter E20 and E14), detected between May 2010 andMay 2012


The Astrophysical Journal | 2016

NuSTAR and XMM-Newton Observations of the Hard X-Ray Spectrum of Centaurus A

Felix Fürst; C. Müller; K. K. Madsen; Lauranne Lanz; E. Rivers; M. Brightman; P. Arévalo; M. Baloković; T. Beuchert; S. E. Boggs; Finn Erland Christensen; William W. Craig; T. Dauser; D. Farrah; C. Graefe; Charles J. Hailey; Fiona A. Harrison; M. Kadler; Ashley L. King; F. Krauß; G. M. Madejski; G. Matt; A. Marinucci; A. Markowitz; P. Ogle; R. Ojha; Richard E. Rothschild; D. Stern; D. J. Walton; J. Wilms

We present simultaneous XMM-Newton and Nuclear Spectroscopic Telescope Array (NuSTAR) observations spanning 3–78 keV of the nearest radio galaxy, Centaurus A (Cen A). The accretion geometry around the central engine in Cen A is still debated, and we investigate possible configurations using detailed X-ray spectral modeling. NuSTAR imaged the central region of Cen A with subarcminute resolution at X-ray energies above 10 keV for the first time, but found no evidence for an extended source or other off-nuclear point sources. The XMM-Newton and NuSTAR spectra agree well and can be described with an absorbed power law with a photon index Γ = 1.815 ± 0.005 and a fluorescent Fe Kɑ line in good agreement with literature values. The spectrum does not require a high-energy exponential rollover, with a constraint of E_(fold) > 1 MeV. A thermal Comptonization continuum describes the data well, with parameters that agree with values measured by INTEGRAL, in particular an electron temperature kTe between ≈100–300 keV and seed photon input temperatures between 5 and 50 eV. We do not find evidence for reflection or a broad iron line and put stringent upper limits of R < 0.01 on the reflection fraction and accretion disk illumination. We use archival Chandra data to estimate the contribution from diffuse emission, extra-nuclear point sources, and the outer X-ray jet to the observed NuSTAR and XMM-Newton X-ray spectra and find the contribution to be negligible. We discuss different scenarios for the physical origin of the observed hard X-ray spectrum and conclude that the inner disk is replaced by an advection-dominated accretion flow or that the X-rays are dominated by synchrotron self-Compton emission from the inner regions of the radio jet or a combination thereof.


Astronomy and Astrophysics | 2014

The unusual multiwavelength properties of the gamma-ray source PMN J1603−4904

C. Müller; M. Kadler; R. Ojha; M. Böck; F. Krauß; G. B. Taylor; J. Wilms; J. Blanchard; B. Carpenter; T. Dauser; M. Dutka; Philip G. Edwards; N. Gehrels; C. Großberger; H. Hase; S. Horiuchi; A. Kreikenbohm; J. E. J. Lovell; W. McConville; Chris Phillips; C. Plötz; T. Pursimo; J. Quick; E. Ros; Robert Schulz; J. Stevens; S. J. Tingay; J. Trüstedt; A. K. Tzioumis; J. A. Zensus

Context: We investigate the nature and classification of PMN J1603−4904, a bright radio source close to the Galactic plane, which is associated with one of the brightest hard-spectrum γ-ray sources detected by Fermi/LAT. It has previously been classified as a low-peaked BL Lac object based on its broadband emission and the absence of optical emission lines. Optical measurements, however, suffer strongly from extinction and the absence of pronounced short-time γ-ray variability over years of monitoring is unusual for a blazar. Aims: In this paper, we are combining new and archival multiwavelength data of PMN J1603−4904 in order to reconsider the classification and nature of this unusual γ-ray source. Methods. For the first time, we study the radio morphology of PMN J1603−4904 at 8.4 GHz and 22.3 GHz, and its spectral properties on milliarcsecond scales, based on VLBI observations from the TANAMI program. We combine the resulting images with multiwavelength data in the radio, IR, optical/UV, X-ray, and γ-ray regimes. Results: PMN J1603−4904 shows a symmetric brightness distribution at 8.4 GHz on milliarcsecond scales, with the brightest, and most compact component in the center of the emission region. The morphology is reminiscent of a compact symmetric object (CSO). Such objects, thought to be young radio galaxies, have been predicted to produce γ-ray emission but have not been detected as a class by the Fermi γ-ray telescope so far. Sparse (u,v)-coverage at 22.3 GHz prevents an unambiguous modeling of the source morphology at this higher frequency. Moreover, infrared measurements reveal an excess in the spectral energy distribution (SED), which can be modeled with a blackbody with a temperature of about 1600 K, and which is usually not present in blazar SEDs. Conclusions: The TANAMI VLBI data and the shape of the broadband SED challenge the current blazar classification of one of the brightest γ-ray sources in the sky. PMN J1603−4904 seems to be either a highly peculiar BL Lac object or a misaligned jet source. In the latter case, the intriguing VLBI structure opens room for a possible classification of PMN J1603−4904 as a γ-ray bright CSO.


Monthly Notices of the Royal Astronomical Society | 2015

5.9-keV Mn K-shell X-ray luminosity from the decay of 55Fe in Type Ia supernova models

Ivo R. Seitenzahl; Alexander Summa; F. Krauß; S. A. Sim; R. Diehl; D. Elsässer; M. Fink; W. Hillebrandt; M. Kromer; Keiichi Maeda; K. Mannheim; R. Pakmor; F. K. Röpke; Ashley J. Ruiter; J. Wilms

We show that the X-ray line flux of the Mn Ka line at 5.9 keV from the decay of Fe-55 is a promising diagnostic to distinguish between Type Ia supernova (SN Ia) explosion models. Using radiation transport calculations, we compute the line flux for two three-dimensional explosion models: a near-Chandrasekhar mass delayed detonation and a violent merger of two (1.1 and 0.9 M-circle dot) white dwarfs. Both models are based on solar metallicity zero-age main-sequence progenitors. Due to explosive nuclear burning at higher density, the delayed-detonation model synthesizes similar to 3.5 times more radioactive Fe-55 than the merger model. As a result, we find that the peak Mn K alpha line flux of the delayed-detonation model exceeds that of the merger model by a factor of similar to 4.5. Since in both models the 5.9-keV X-ray flux peaks five to six years after the explosion, a single measurement of the X-ray line emission at this time can place a constraint on the explosion physics that is complementary to those derived from earlier phase optical spectra or light curves. We perform detector simulations of current and future X-ray telescopes to investigate the possibilities of detecting the X-ray line at 5.9 keV. Of the currently existing telescopes, XMM-Newton/pn is the best instrument for close (less than or similar to 1-2 Mpc), non-background limited SNe Ia because of its large effective area. Due to its low instrumental background, Chandra/ACIS is currently the best choice for SNe Ia at distances above similar to 2 Mpc. For the delayed-detonation scenario, a line detection is feasible with Chandra up to similar to 3 Mpc for an exposure time of 10(6) s. We find that it should be possible with currently existing X-ray instruments (with exposure times less than or similar to 5 x 10(5) s) to detect both of our models at sufficiently high S/N to distinguish between them for hypothetical events within the Local Group. The prospects for detection will be better with future missions. For example, the proposed Athena/X-IFU instrument could detect our delayed-detonation model out to a distance of similar to 5 Mpc. This would make it possible to study future events occurring during its operational life at distances comparable to those of the recent supernovae SN 2011 fe (similar to 6.4 Mpc) and SN 2014J (similar to 3.5 Mpc).


Astronomy and Astrophysics | 2016

The TANAMI Multiwavelength Program: Dynamic spectral energy distributions of southern blazars

F. Krauß; Joern Wilms; M. Kadler; R. Ojha; Robert Schulz; J. Trüstedt; Philip G. Edwards; J. Stevens; E. Ros; Wayne H. Baumgartner; T. Beuchert; J. Blanchard; S. Buson; B. Carpenter; T. Dauser; Sebastian Falkner; Neil Gehrels; C. Gräfe; Sergei Gulyaev; H. Hase; S. Horiuchi; A. Kreikenbohm; Ingo Kreykenbohm; M. Langejahn; Katharina Leiter; Jim Lovell; C. Müller; T. Natusch; Roberto Nesci; T. Pursimo

We thank the referee for helpful comments. We thank S. Cutini for her useful comments. We thank S. Markoff for helpful discussions. We thank J. Perkins, L. Baldini, and S. Digel for carefully reading the manuscript. We thank M. Buxton for her help with the SMARTS data. We acknowledge support and partial funding by the Deutsche Forschungsgemeinschaft grant WI 1860-10/1 (TANAMI) and GRK 1147, Deutsches Zentrum fur Luft- und Raumfahrt grants 50 OR 1311 and 50 OR 1103, and the Helmholtz Alliance for Astroparticle Physics (HAP). This research was funded in part by NASA through Fermi Guest Investigator grants NNH09ZDA001N, NH10ZDA001N, NNH12ZDA001N, and NNH13ZDA001N-FERMI. This research was supported by an appointment to the NASA Postdoctoral Program at the Goddard Space Flight Center, administered by Oak Ridge Associated Universities through a contract with NASA. E.R. was partially supported by the Spanish MINECO project AYA2012-38491-C02-01 and by the Generalitat Valenciana project PROMETEO II/2014/057. We thank J. E. Davis for the development of the slxfig module that was used to prepare the figures in this work. We thank T. Johnson for the Fermi/LAT SED scripts, which were used to calculate the Fermi/LAT spectra. This research has made use of a collection of ISIS scripts provided by the Dr. Karl Remeis-Observatory, Bamberg, Germany at http://www.sternwarte.uni-erlangen.de/isis/. The Long Baseline Array and Australia Telescope Compact Array are part of the Australia Telescope National Facility, which is funded by the Commonwealth of Australia for operation as a National Facility managed by CSIRO. This paper has made use of up-to-date SMARTS optical/near-infrared light curves that are available at www.astro.yale.edu/smarts/glast/home.php. The Fermi LAT Collaboration acknowledges generous ongoing support from a number of agencies and institutes that have supported both the development and the operation of the LAT as well as scientific data analysis. These include the National Aeronautics and Space Administration and the Department of Energy in the United States, the Commissariat a l’Energie Atomique and the Centre National de la Recherche Scientifique / Institut National de Physique Nucleaire et de Physique des Particules in France, the Agenzia Spaziale Italiana and the Istituto Nazionale di Fisica Nucleare in Italy, the Ministry of Education, Culture, Sports, Science and Technology (MEXT), High Energy Accelerator Research Organization (KEK) and Japan Aerospace Exploration Agency (JAXA) in Japan, and the K.A. Wallenberg Foundation, the Swedish Research Council and the Swedish National Space Board in Sweden. Additional support for science analysis during the operations phase is gratefully acknowledged from the Istituto Nazionale di Astrofisica in Italy and the Centre National d’Etudes Spatiales in France


Astronomy and Astrophysics | 2016

Radio and gamma-ray properties of extragalactic jets from the TANAMI sample

M. Böck; M. Kadler; C. Müller; G. Tosti; R. Ojha; J. Wilms; D. Bastieri; T. H. Burnett; B. Carpenter; E. Cavazzuti; M. Dutka; J. Blanchard; Philip G. Edwards; H. Hase; S. Horiuchi; David L. Jauncey; F. Krauß; M. L. Lister; J. E. J. Lovell; B. Lott; David W. Murphy; Chris Phillips; C. Plötz; T. Pursimo; J. Quick; E. Ros; G. B. Taylor; D. J. Thompson; Steven J. Tingay; A. K. Tzioumis

The TANAMI program has been observing parsec-scale radio jets of southern (declination south of − 30°) γ -ray bright AGN, simultaneously with Fermi /LAT monitoring of their γ -ray emission, via high-resolution radio imaging with Very Long Baseline Interferometry techniques. We present the radio and γ -rayproperties of the TANAMI sources based on one year of contemporaneous TANAMI and Fermi /LAT data. A large fraction (72%) of the TANAMI sample can be associated with bright γ -ray sources for this time range. Association rates differ for different optical classes with all BL Lacs, 76% of quasars, and just 17% of galaxies detected by the LAT. Upper limits were established on the γ -ray flux from TANAMI sources not detected by LAT. This analysis led to the identification of three new Fermi sources whose detection was later confirmed. The γ -ray and radio luminosities are related by L γ ∝ L r 0.89±0.04 . The brightness temperatures of the radio cores increase with the average γ -ray luminosity and the presence of brightness temperatures above the inverse Compton limit implies strong Doppler boosting in those sources. The undetected sources have lower γ /radio luminosity ratios and lower contemporaneous brightness temperatures. Unless the Fermi /LAT-undetected blazars are much γ -ray-fainter than the Fermi /LAT-detected sources, their γ -ray luminosity should not be significantly lower than the upper limits calculated here.


Astronomy and Astrophysics | 2016

Optical-NIR spectroscopy of the puzzling gamma-ray source 3FGL 1603.9-4903/ PMN J1603-4904 with X-Shooter

P. Goldoni; S. Pita; C. Boisson; C. Müller; T. Dauser; I. Jung; F. Krauß; J.-P. Lenain; H. Sol

The Fermi/LAT instrument has detected about two thousands Extragalactic High Energy (E > 100 MeV) gamma-ray sources. One of the brightest is 3FGL 1603.9-4903, associated to the radio source PMN J1603-4904. Its nature is not yet clear, it could be either a very peculiar BL Lac or a CSO (Compact Symmetric Object) radio source, considered as the early stage of a radio galaxy. The latter, if confirmed, would be the first detection in gamma-rays for this class of objects. Recently a redshift z=0.18 +/- 0.01 has been claimed on the basis of the detection of a single X-ray line at 5.44 +/- 0.05 keV interpreted as a 6.4 keV (rest frame) fluorescent line. We aim to investigate the nature of 3FGL 1603.9-4903/PMN J1603-4904 using optical to NIR spectroscopy. We observed PMN J1603-4904 with the UV-NIR VLT/X-shooter spectrograph for two hours. We extracted spectra in the VIS and NIR range that we calibrated in flux and corrected for telluric absorption and we systematically searched for absorption and emission features. The source was detected starting from ~6300 Ang down to 24000 Ang with an intensity comparable to the one of its 2MASS counterpart and a mostly featureless spectrum. The continuum lacks absorption features and thus is non-stellar in origin and likely non-thermal. On top of this spectrum we detected three emission lines that we interpret as the Halpha-[NII] complex, the [SII] 6716,6731 doublet and the [SIII] 9530 line, obtaining a redshift estimate of z= 0.2321 +/- 0.0004. The equivalent width of the Halpha-[NII] complex implies that PMN J1603-4904 does not follow the observational definition of BL Lac, the line ratios suggest that a LINER/Seyfert nucleus is powering the emission. This new redshift measurement implies that the X-ray line previously detected should be interpreted as a 6.7 keV line which is very peculiar.


Astronomy and Astrophysics | 2015

A variable-density absorption event in NGC 3227 mapped with Suzaku and Swift

T. Beuchert; A. Markowitz; F. Krauß; G. Miniutti; A. L. Longinotti; Matteo Guainazzi; I. de la Calle Perez; M. Malkan; M. Elvis; Takamitsu Miyaji; D. Hiriart; J. López; I. Agudo; T. Dauser; J. Garcia; A. Kreikenbohm; M. Kadler; J. Wilms

Context. The morphology of the circumnuclear gas accreting onto supermassive black holes in Seyfert galaxies remains a topic of much debate. As the innermost regions of Active Galactic Nuclei (AGN) are spatially unresolved, X-ray spectroscopy, and in particular line-of-sight absorption variability, is a key diagnostic to map out the distribution of gas. Aims. Observations of variable X-ray absorption in multiple Seyferts and over a wide range of timescales indicate the presence of clumps/clouds of gas within the circumnuclear material. Eclipse events by clumps transiting the line of sight allow us to explore the properties of the clumps over a wide range of radial distances from the optical/UV Broad Line Region (BLR) to beyond the dust sublimation radius. Time-resolved absorption events have been extremely rare so far, but suggest a range of density profiles across Seyferts. We resolve a weeks-long absorption event in the Seyfert NGC 3227. Methods. We examine six Suzaku and twelve Swift observations from a 2008 campaign spanning 5 weeks. We use a model accounting for the complex spectral interplay of three di erently-ionized absorbers. We perform time-resolved spectroscopy to discern the absorption variability behavior. We also examine the IR-to-X-ray spectral energy distribution (SED) to test for reddening by dust. Results. The 2008 absorption event is due to moderately-ionized (log 1:2‐1:4) gas covering 90% of the line of sight. We resolve the density profile to be highly irregular, in contrast to a previous symmetric and centrally-peaked event mapped with RXTE in the same object. The UV data do not show significant reddening, suggesting that the cloud is dust-free. Conclusions. The 2008 campaign has revealed a transit by a filamentary, moderately-ionized cloud of variable density that is likely located in the BLR, and possibly part of a disk wind.


Publications of the Astronomical Society of Japan | 2016

A significant hardening and rising shape detected in the MeV/GeV νFν spectrum from the recently discovered very-high-energy blazar S4 0954+65 during the bright optical flare in 2015 February

Y. Tanaka; Josefa González; R. Itoh; J. Finke; Yoshiyuki Inoue; R. Ojha; B. Carpenter; E. Lindfors; F. Krauß; R. Desiante; Kensei Shiki; Yasushi Fukazawa; F. Longo; J. E. McEnery; Sara Buson; K. Nilsson; Vandad Fallah Ramazani; R. Reinthal; Leo O. Takalo; Tapio Pursimo; Walter Boschin

We report on Fermi Large Area Telescope (LAT) and multi-wavelength results on the recently-discovered very-high-energy (VHE,

Collaboration


Dive into the F. Krauß's collaboration.

Top Co-Authors

Avatar

M. Kadler

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar

C. Müller

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

R. Ojha

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar

J. Wilms

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

T. Dauser

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

B. Carpenter

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar

A. Kreikenbohm

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Robert Schulz

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

E. Ros

University of Valencia

View shared research outputs
Top Co-Authors

Avatar

K. Mannheim

University of Würzburg

View shared research outputs
Researchain Logo
Decentralizing Knowledge