Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where F. Ludwig is active.

Publication


Featured researches published by F. Ludwig.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Global water resources affected by human interventions and climate change

Ingjerd Haddeland; Jens Heinke; Hester Biemans; Stephanie Eisner; Martina Flörke; Naota Hanasaki; Markus Konzmann; F. Ludwig; Yoshimitsu Masaki; Jacob Schewe; Tobias Stacke; Zachary Tessler; Yoshihide Wada; Dominik Wisser

Significance Humans alter the water cycle by constructing dams and through water withdrawals. Climate change is expected to additionally affect water supply and demand. Here, model analyses of climate change and direct human impacts on the terrestrial water cycle are presented. The results indicate that the impact of man-made reservoirs and water withdrawals on the long-term global terrestrial water balance is small. However, in some river basins, impacts of human interventions are significant. In parts of Asia and the United States, the effects of human interventions exceed the impacts expected for moderate levels of global warming. This study also identifies areas where irrigation water is currently scarce, and where increases in irrigation water scarcity are projected. Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared using a multimodel approach. Seven global hydrological models have been forced with multiple climate projections, and with and without taking into account impacts of human interventions such as dams and water withdrawals on the hydrological cycle. Model results are analyzed for different levels of global warming, allowing for analyses in line with temperature targets for climate change mitigation. The results indicate that direct human impacts on the water cycle in some regions, e.g., parts of Asia and in the western United States, are of the same order of magnitude, or even exceed impacts to be expected for moderate levels of global warming (+2 K). Despite some spread in model projections, irrigation water consumption is generally projected to increase with higher global mean temperatures. Irrigation water scarcity is particularly large in parts of southern and eastern Asia, and is expected to become even larger in the future.


Journal of Hydrometeorology | 2011

Multimodel estimate of the global terrestrial water balance: setup and first results

Ingjerd Haddeland; Douglas B. Clark; Wietse Franssen; F. Ludwig; F. Voss; Nigel W. Arnell; N. Bertrand; M. J. Best; Sonja S. Folwell; Dieter Gerten; S. M. Gomes; Simon N. Gosling; Stefan Hagemann; Naota Hanasaki; Richard Harding; Jens Heinke; P. Kabat; Sujan Koirala; Taikan Oki; Jan Polcher; Tobias Stacke; Pedro Viterbo; Graham P. Weedon; Pat J.-F. Yeh

Six land surface models and five global hydrological models participate in a model intercomparison project [Water Model Intercomparison Project (WaterMIP)], which for the first time compares simulation results of these different classes of models in a consistent way. In this paper, the simulation setup is described and aspects of the multimodel global terrestrial water balance are presented. All models were run at 0.58 spatial resolution for the global land areas for a 15-yr period (1985–99) using a newly developed global meteorological dataset. Simulated global terrestrial evapotranspiration, excluding Greenland and Antarctica, ranges from 415 to 586 mm yr 21 (from 60 000 to 85 000 km 3 yr 21 ), and simulated runoff ranges from 290 to 457 mm yr 21 (from 42 000 to 66 000 km 3 yr 21 ). Both the mean and median runoff fractions for the land surface models are lower than those of the global hydrological models, although the range is wider. Significant simulation differences between land surface and global hydrological models are found to be caused by the snow scheme employed. The physically based energy balance approach used by land surface models generally results in lower snow water equivalent values than the conceptual degreeday approach used by global hydrological models. Some differences in simulated runoff and evapotranspiration are explained by model parameterizations, although the processes included and parameterizations used are not distinct to either land surface models or global hydrological models. The results show that differences between models are a major source of uncertainty. Climate change impact studies thus need to use not only multiple climate models but also some other measure of uncertainty (e.g., multiple impact


Proceedings of the National Academy of Sciences of the United States of America | 2014

Constraints and potentials of future irrigation water availability on agricultural production under climate change

Joshua Elliott; Delphine Deryng; Christoph Müller; Katja Frieler; Markus Konzmann; Dieter Gerten; Michael Glotter; Martina Flörke; Yoshihide Wada; Neil Best; Stephanie Eisner; B M Fekete; Christian Folberth; Ian T. Foster; Simon N. Gosling; Ingjerd Haddeland; Nikolay Khabarov; F. Ludwig; Yoshimitsu Masaki; Stefan Olin; Cynthia Rosenzweig; Alex C. Ruane; Yusuke Satoh; Erwin Schmid; Tobias Stacke; Qiuhong Tang; Dominik Wisser

Significance Freshwater availability is relevant to almost all socioeconomic and environmental impacts of climate and demographic change and their implications for sustainability. We compare ensembles of water supply and demand projections driven by ensemble output from five global climate models. Our results suggest reasons for concern. Direct climate impacts to maize, soybean, wheat, and rice involve losses of 400–2,600 Pcal (8–43% of present-day total). Freshwater limitations in some heavily irrigated regions could necessitate reversion of 20–60 Mha of cropland from irrigated to rainfed management, and a further loss of 600–2,900 Pcal. Freshwater abundance in other regions could help ameliorate these losses, but substantial investment in infrastructure would be required. We compare ensembles of water supply and demand projections from 10 global hydrological models and six global gridded crop models. These are produced as part of the Inter-Sectoral Impacts Model Intercomparison Project, with coordination from the Agricultural Model Intercomparison and Improvement Project, and driven by outputs of general circulation models run under representative concentration pathway 8.5 as part of the Fifth Coupled Model Intercomparison Project. Models project that direct climate impacts to maize, soybean, wheat, and rice involve losses of 400–1,400 Pcal (8–24% of present-day total) when CO2 fertilization effects are accounted for or 1,400–2,600 Pcal (24–43%) otherwise. Freshwater limitations in some irrigated regions (western United States; China; and West, South, and Central Asia) could necessitate the reversion of 20–60 Mha of cropland from irrigated to rainfed management by end-of-century, and a further loss of 600–2,900 Pcal of food production. In other regions (northern/eastern United States, parts of South America, much of Europe, and South East Asia) surplus water supply could in principle support a net increase in irrigation, although substantial investments in irrigation infrastructure would be required.


Plant Ecology | 2004

The influence of savanna trees on nutrient, water and light availability and the understorey vegetation

F. Ludwig; J.C.J.M. de Kroon; Frank Berendse; Herbert H. T. Prins

In an East African savanna herbaceous layer productivity and species composition were studied around Acacia tortilis trees of three different age classes, as well as around dead trees and in open grassland patches. The effects of trees on nutrient, light and water availability were measured to obtain an insight into which resources determine changes in productivity and composition of the herbaceous layer. Soil nutrient availability increased with tree age and size and was lowest in open grassland and highest under dead trees. The lower N:P ratios of grasses from open grassland compared to grasses from under trees suggested that productivity in open grassland was limited by nitrogen, while under trees the limiting nutrient was probably P. N:P ratios of grasses growing under bushes and small trees were intermediate between large trees and open grassland indicating that the understorey of Acacia trees seemed to change gradually from a N-limited to a P-limited vegetation. Soil moisture contents were lower under than those outside of canopies of large Acacia trees suggesting that water competition between trees and grasses was important. Species composition of the herbaceous layer under Acacia trees was completely different from the vegetation in open grassland. Also the vegetation under bushes of Acacia tortilis was different from both open grassland and the understorey of large trees. The main factor causing differences in species composition was probably nutrient availability because species compositions were similar for stands of similar soil nutrient concentrations even when light and water availability was different. Changes in species composition did not result in differences in above-ground biomass, which was remarkably similar under different sized trees and in open grassland. The only exception was around dead trees where herbaceous plant production was 60% higher than under living trees. The results suggest that herbaceous layer productivity did not increase under trees by a higher soil nutrient availability, probably because grass production was limited by competition for water. This was consistent with the high plant production around dead trees because when trees die, water competition disappears but the high soil nutrient availability remains. Hence, in addition to tree soil nutrient enrichment, below-ground competition for water appears to be an important process regulating tree-grass interactions in semi-arid savanna.


Journal of Vegetation Science | 2001

Effects of nutrients and shade on tree‐grass interactions in an East African savanna

F. Ludwig; Hans de Kroon; Herbert H. T. Prins; Frank Berendse

Savanna trees have a multitude of positive and negative effects on understorey grass production. but little is known about how these effects interact. We report on a fertilization and shading experiment carried out in a Tanzanian tropical city savanna around Acacia tortilis trees. In two years of study there was no difference in grass production under tree canopies or in open grassland, Fertilization, however, indicate that trees do affect the nutrient limitation of the grass layer with an N-limited system in open grassland to a P-limited system under the trees. The NT ratios of grass gave a reliable indication of the nature of nutrient limitation, but only when assessed at the end of the wet season, Mid-wet season nutrient concentrations of grasses were higher under than outside the tree canopy, suggesting that factors other than nutrients limit grass production. A shading experiment indicated that light may be such a limiting factor during the wet season when water and nutrients are sufficiently available. However, in the dry season when water is scarce, the effect of shade on plant production became positive. We conclude that whether trees increase or decrease production of the herbaceous layer depends on how positive effects (increased soil fertility) and negative effects (shade and soil water availability) interact and that these interactions may significantly change between wet and dry seasons.


Journal of Hydrometeorology | 2011

WATCH: Current Knowledge of the Terrestrial Global Water Cycle

Richard Harding; M. J. Best; Eleanor Blyth; Stefan Hagemann; P. Kabat; Lena M. Tallaksen; Tanya Warnaars; D. Wiberg; Graham P. Weedon; Henny A. J. Van Lanen; F. Ludwig; Ingjerd Haddeland

AbstractWater-related impacts are among the most important consequences of increasing greenhouse gas concentrations. Changes in the global water cycle will also impact the carbon and nutrient cycles and vegetation patterns. There is already some evidence of increasing severity of floods and droughts and increasing water scarcity linked to increasing greenhouse gases. So far, however, the most important impacts on water resources are the direct interventions by humans, such as dams, water extractions, and river channel modifications. The Water and Global Change (WATCH) project is a major international initiative to bring together climate and water scientists to better understand the current and future water cycle. This paper summarizes the underlying motivation for the WATCH project and the major results from a series of papers published or soon to be published in the Journal of Hydrometeorology WATCH special collection. At its core is the Water Model Intercomparison Project (WaterMIP), which brings togeth...


Oecologia | 2008

Impacts of savanna trees on forage quality for a large African herbivore

F. Ludwig; Hans de Kroon; Herbert H. T. Prins

Recently, cover of large trees in African savannas has rapidly declined due to elephant pressure, frequent fires and charcoal production. The reduction in large trees could have consequences for large herbivores through a change in forage quality. In Tarangire National Park, in Northern Tanzania, we studied the impact of large savanna trees on forage quality for wildebeest by collecting samples of dominant grass species in open grassland and under and around large Acacia tortilis trees. Grasses growing under trees had a much higher forage quality than grasses from the open field indicated by a more favourable leaf/stem ratio and higher protein and lower fibre concentrations. Analysing the grass leaf data with a linear programming model indicated that large savanna trees could be essential for the survival of wildebeest, the dominant herbivore in Tarangire. Due to the high fibre content and low nutrient and protein concentrations of grasses from the open field, maximum fibre intake is reached before nutrient requirements are satisfied. All requirements can only be satisfied by combining forage from open grassland with either forage from under or around tree canopies. Forage quality was also higher around dead trees than in the open field. So forage quality does not reduce immediately after trees die which explains why negative effects of reduced tree numbers probably go initially unnoticed. In conclusion our results suggest that continued destruction of large trees could affect future numbers of large herbivores in African savannas and better protection of large trees is probably necessary to sustain high animal densities in these ecosystems.


Journal of Vegetation Science | 2008

Improved quality of beneath-canopy grass in South African savannas: Local and seasonal variation

Anna C. Treydte; F.A. Looringh van Beeck; F. Ludwig; Ignas M. A. Heitkönig

Abstract Questions: Do large trees improve the nutrient content and the structure of the grass layer in savannas? Does the magnitude of this improvement differ with locality (soil nutrients) and season (water availability)? Are grass structure and species composition beneath tree canopies influenced by soil fertility and season? Location: South Africa. Methods: We compared grass leaf nutrient contents and grass sward structure beneath and outside tree canopy areas in three savannas of different soil fertility during the dry and the wet seasons. Results: Grass nitrogen contents were twice as high during the wet season as compared to the dry season, being more strongly elevated underneath tree canopies during the wet season. Grasses had significantly less stem material and provided less dead material underneath trees on the high soil fertility site. Grass species composition differed significantly beneath and outside tree canopies, with more nutritious grass species found sub-canopy. Grass species richness was significantly lower beneath than outside of trees at the site of high soil fertility. Conclusions: Trees improve overall quality of savanna grasses by enhancing grass growth and nutrient uptake during the wet season, and by delaying grass wilting in the dry season. The positive effect of trees on the grass layer might attract grazing herbivores in otherwise nutrient-poor savannas. Hence, single standing large trees should be maintained to sustain high grass quality and, consequently, grazer populations in savanna habitats. Nomenclature: Trees: Palgrave (1983); Beentje et al. (1994) Grasses: Van Oudtshoorn (1999).


Science of The Total Environment | 2013

Future water resources for food production in five South Asian river basins and potential for adaptation — A modeling study

Hester Biemans; L.H. Speelman; F. Ludwig; E.J. Moors; Andrew J. Wiltshire; Pankaj Kumar; Dieter Gerten; P. Kabat

The Indian subcontinent faces a population increase from 1.6 billion in 2000 towards 2 billion around 2050. Therefore, expansion of agricultural area combined with increases in productivity will be necessary to produce the food needed in the future. However, with pressure on water resources already being high, and potential effects of climate change still uncertain, the question rises whether there will be enough water resources available to sustain this production. The objective of this study is to make a spatially explicit quantitative analysis of water requirements and availability for current and future food production in five South Asian basins (Indus, Ganges, Brahmaputra, Godavari and Krishna), in the absence or presence of two different adaptation strategies: an overall improvement in irrigation efficiency, and an increase of reservoir storage capacity. The analysis is performed by using the coupled hydrology and crop production model LPJmL. It is found that the Godavari and Krishna basins will benefit most from an increased storage capacity, whereas in the Ganges and the Indus water scarcity mainly takes place in areas where this additional storage would not provide additional utility. Increasing the irrigation efficiency will be beneficial in all basins, but most in the Indus and Ganges, as it decreases the pressure on groundwater resources and decreases the fraction of food production that would become at risk because of water shortage. A combination of both options seems to be the best strategy in all basins. The large-scale model used in this study is suitable to identify hotspot areas and support the first step in the policy process, but the final design and implementation of adaptation options requires supporting studies at finer scales.


Climatic Change | 2013

Global streamflow and thermal habitats of freshwater fishes under climate change

Michelle T.H. van Vliet; F. Ludwig; P. Kabat

Climate change will affect future flow and thermal regimes of rivers. This will directly affect freshwater habitats and ecosystem health. In particular fish species, which are strongly adapted to a certain level of flow variability will be sensitive to future changes in flow regime. In addition, all freshwater fish species are exotherms, and increasing water temperatures will therefore directly affect fishes’ biochemical reaction rates and physiology. To assess climate change impacts on large-scale freshwater fish habitats we used a physically-based hydrological and water temperature modelling framework forced with an ensemble of climate model output. Future projections on global river flow and water temperature were used in combination with current spatial distributions of several fish species and their maximum thermal tolerances to explore impacts on fish habitats in different regions around the world. Results indicate that climate change will affect seasonal flow amplitudes, magnitude and timing of high and low flow events for large fractions of the global land surface area. Also, significant increases in both the frequency and magnitude of exceeding maximum temperature tolerances for selected fish species are found. Although the adaptive capacity of fish species to changing hydrologic regimes and rising water temperatures could be variable, our global results show that fish habitats are likely to change in the near future, and this is expected to affect species distributions.

Collaboration


Dive into the F. Ludwig's collaboration.

Top Co-Authors

Avatar

P. Kabat

International Institute for Applied Systems Analysis

View shared research outputs
Top Co-Authors

Avatar

Ingjerd Haddeland

Norwegian Water Resources and Energy Directorate

View shared research outputs
Top Co-Authors

Avatar

Iwan Supit

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Dieter Gerten

Potsdam Institute for Climate Impact Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chantal Donnelly

Swedish Meteorological and Hydrological Institute

View shared research outputs
Top Co-Authors

Avatar

M. van Vliet

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Michelle T.H. van Vliet

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

E.J. Moors

Wageningen University and Research Centre

View shared research outputs
Researchain Logo
Decentralizing Knowledge