F. Mantovani
University of Ferrara
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by F. Mantovani.
Computing in Science and Engineering | 2009
F. Belletti; M. Cotallo; A. Cruz; L. A. Fernandez; A. Gordillo-Guerrero; M. Guidetti; A. Maiorano; F. Mantovani; Enzo Marinari; V. Martin-Mayor; A. Muoz-Sudupe; D. Navarro; Giorgio Parisi; S. Perez-Gaviro; Mauro Rossi; J. J. Ruiz-Lorenzo; Sebastiano Fabio Schifano; D. Sciretti; A. Tarancón; R. Tripiccione; J.L. Velasco; D. Yllanes; Gianpaolo Zanier
Janus is a modular, massively parallel, and reconfigurable FPGA-based computing system. Each Janus module has one computational core and one host. Janus is tailored to, but not limited to, the needs of a class of hard scientific applications characterized by regular code structure, unconventional data-manipulation requirements, and a few Megabits database. The authors discuss this configurable systems architecture and focus on its use for Monte Carlo simulations of statistical mechanics, as Janus performs impressively on this class of application.
international conference on conceptual structures | 2013
G. Crimi; F. Mantovani; Marcello Pivanti; Sebastiano Fabio Schifano; R. Tripiccione
Abstract In this paper we report on our early experience on porting, optimizing and benchmarking a Lattice Boltzmann (LB) code on the Xeon-Phi co-processor, the first generally available version of the new Many Integrated Core (MIC) architecture, developed by Intel. We consider as a test-bed a state-of-the-art LB model, that accurately reproduces the thermo-hydrodynamics of a 2D- fluid obeying the equations of state of a perfect gas. The regular structure of LB algorithms makes it relatively easy to identify a large degree of available parallelism. However, mapping a large fraction of this parallelism onto this new class of processors is not straightforward. The D2Q37 LB algorithm considered in this paper is an appropriate test-bed for this architecture since the critical computing kernels require high performances both in terms of memory bandwidth for sparse memory access patterns and number crunching capability. We describe our implementation of the code, that builds on previous experience made on other (simpler) many-core processors and GPUs, present benchmark results and measure performances, and finally compare with the results obtained by previous implementations developed on state-of-the-art classic multi-core CPUs and GP-GPUs.
Journal of Statistical Mechanics: Theory and Experiment | 2010
R. Alvarez Banos; A. Cruz; L. A. Fernandez; J. M. Gil-Narvion; A. Gordillo-Guerrero; M. Guidetti; A. Maiorano; F. Mantovani; Enzo Marinari; V. Martin-Mayor; J. Monforte-Garcia; A. Muñoz Sudupe; D. Navarro; Giorgio Parisi; S. Perez-Gaviro; J. J. Ruiz-Lorenzo; Sebastiano Fabio Schifano; B. Seoane; A. Tarancón; R. Tripiccione; D. Yllanes
We present a massive equilibrium simulation of the three-dimensional Ising spin glass at low temperatures. The Janus special-purpose computer has allowed us to equilibrate, using parallel tempering, L = 32 lattices down to T ≈ 0.64Tc. We demonstrate the relevance of equilibrium finite-size simulations to understand experimental non-equilibrium spin glasses in the thermodynamical limit by establishing a time-length dictionary. We conclude that non-equilibrium experiments performed on a time scale of one hour can be matched with equilibrium results on L ≈ 110 lattices. A detailed investigation of the probability distribution functions of the spin and link overlap, as well as of their correlation functions, shows that Replica Symmetry Breaking is the appropriate theoretical framework for the physically relevant length scales. Besides, we improve over existing methodologies to ensure equilibration in parallel tempering simulations.
Physical Review Letters | 2008
F. Belletti; M. Cotallo; A. Cruz; L. A. Fernandez; A. Gordillo-Guerrero; M. Guidetti; A. Maiorano; F. Mantovani; Enzo Marinari; V. Martin-Mayor; A. Muñoz Sudupe; D. Navarro; Giorgio Parisi; S. Perez-Gaviro; J. J. Ruiz-Lorenzo; Sebastiano Fabio Schifano; D. Sciretti; A. Tarancón; R. Tripiccione; J. L. Velasco; D. Yllanes
We study numerically the nonequilibrium dynamics of the Ising spin glass, for a time spanning 11 orders of magnitude, thus approaching the experimentally relevant scale (i.e., seconds). We introduce novel analysis techniques to compute the coherence length in a model-independent way. We present strong evidence for a replicon correlator and for overlap equivalence. The emerging picture is compatible with noncoarsening behavior.
Journal of Statistical Physics | 2009
F. Belletti; A. Cruz; L. A. Fernandez; A. Gordillo-Guerrero; M. Guidetti; A. Maiorano; F. Mantovani; Enzo Marinari; V. Martin-Mayor; J. Monforte; A. Muñoz Sudupe; D. Navarro; Giorgio Parisi; S. Perez-Gaviro; J. J. Ruiz-Lorenzo; Sebastiano Fabio Schifano; D. Sciretti; A. Tarancón; R. Tripiccione; D. Yllanes
Using the special-purpose computer Janus, we follow the nonequilibrium dynamics of the Ising spin glass in three dimensions for eleven orders of magnitude. The use of integral estimators for the coherence and correlation lengths allows us to study dynamic heterogeneities and the presence of a replicon mode and to obtain safe bounds on the Edwards-Anderson order parameter below the critical temperature. We obtain good agreement with experimental determinations of the temperature-dependent decay exponents for the thermoremanent magnetization. This magnitude is observed to scale with the much harder to measure coherence length, a potentially useful result for experimentalists. The exponents for energy relaxation display a linear dependence on temperature and reasonable extrapolations to the critical point. We conclude examining the time growth of the coherence length, with a comparison of critical and activated dynamics.
Computing in Science and Engineering | 2006
F. Belletti; I. Campos; A. Maiorano; S.P. Gavir; D. Sciretti; A. Tarancón; J.L. Velasco; Andres Cruz Flor; D. Navarro; P. Tellez; L. A. Fernandez; V. Martin-Mayor; Antonio Muñoz Sudupe; S. Jimenez; Enzo Marinari; F. Mantovani; G. Poll; Sebastiano Fabio Schifano; L. Tripiccione; J. J. Ruiz-Lorenzo
With Ianus, a next-generation field-programmable gate array (FPGA)-based machine, the authors hope to build a system that can fully exploit the performance potential of FPGA devices. A software platform that simplifies Ianus programming will extend its intended application range to a wide class of interesting and computationally demanding problems.
Physics of Fluids | 2010
Luca Biferale; F. Mantovani; Mauro Sbragaglia; Andrea Scagliarini; Federico Toschi; R. Tripiccione
We present the results of a high resolution numerical study of two-dimensional (2D) Rayleigh–Taylor turbulence using a recently proposed thermal lattice Boltzmann method. The goal of our study is both methodological and physical. We assess merits and limitations concerning small- and large-scale resolution/accuracy of the adopted integration scheme. We discuss quantitatively the requirements needed to keep the method stable and precise enough to simulate stratified and unstratified flows driven by thermal active fluctuations at high Rayleigh and high Reynolds numbers. We present data with spatial resolution up to 4096×10 000 grid points and Rayleigh number up to Ra∼1011. The statistical quality of the data allows us to investigate velocity and temperature fluctuations, scale-by-scale, over roughly four decades. We present a detailed quantitative analysis of scaling laws in the viscous, inertial, and integral range, supporting the existence of a Bolgiano-like inertial scaling, as expected in 2D systems. We...
ieee international conference on high performance computing data and analytics | 2016
Nikola Rajovic; Alejandro Rico; F. Mantovani; Daniel Ruiz; Josep Oriol Vilarrubi; Constantino Gómez; Luna Backes; Diego Nieto; Harald Servat; Xavier Martorell; Jesús Labarta; Eduard Ayguadé; Chris Adeniyi-Jones; Said Derradji; Hervé Gloaguen; Piero Lanucara; Nico Sanna; Jean-François Méhaut; Kevin Pouget; Brice Videau; Eric Boyer; Momme Allalen; Axel Auweter; David Brayford; Daniele Tafani; Volker Weinberg; Dirk Brömmel; Rene Halver; Jan H. Meinke; Ramón Beivide
High-performance computing (HPC) is recognized as one of the pillars for further progress in science, industry, medicine, and education. Current HPC systems are being developed to overcome emerging architectural challenges in order to reach Exascale level of performance, projected for the year 2020. The much larger embedded and mobile market allows for rapid development of intellectual property (IP) blocks and provides more flexibility in designing an application-specific system-on-chip (SoC), in turn providing the possibility in balancing performance, energy-efficiency, and cost. In the Mont-Blanc project, we advocate for HPC systems being built from such commodity IP blocks, currently used in embedded and mobile SoCs. As a first demonstrator of such an approach, we present the Mont-Blanc prototype; the first HPC system built with commodity SoCs, memories, and network interface cards (NICs) from the embedded and mobile domain, and off-the-shelf HPC networking, storage, cooling, and integration solutions. We present the systems architecture and evaluate both performance and energy efficiency. Further, we compare the systems abilities against a production level supercomputer. At the end, we discuss parallel scalability and estimate the maximum scalability point of this approach across a set of applications.
Physical Review B | 2013
Marco Baity-Jesi; Raquel A. Baños; A. Cruz; L. A. Fernandez; J. M. Gil-Narvion; A. Gordillo-Guerrero; D. Iñiguez; A. Maiorano; F. Mantovani; Enzo Marinari; V. Martin-Mayor; J. Monforte-Garcia; A. Muñoz Sudupe; D. Navarro; Giorgio Parisi; S. Perez-Gaviro; Marcello Pivanti; Federico Ricci-Tersenghi; J. J. Ruiz-Lorenzo; Sebastiano Fabio Schifano; B. Seoane; A. Tarancón; R. Tripiccione; D. Yllanes
We report a high-precision finite-size scaling study of the critical behavior of the three-dimensional Ising Edwards-Anderson model (the Ising spin glass). We have thermalized lattices up to L = 40 using the Janus dedicated computer. Our analysis takes into account leading-order corrections to scaling. We obtain Tc = 1.1019(29) for the critical temperature, ν = 2.562(42) for the thermal exponent, η = −0.3900(36) for the anomalous dimension, and ω = 1.12(10) for the exponent of the leading corrections to scaling. Standard (hyper)scaling relations yield α = −5.69(13), β = 0.782(10), and γ = 6.13(11). We also compute several universal quantities at Tc.
Physical Review Letters | 2010
R. Alvarez Banos; A. Cruz; L. A. Fernandez; J. M. Gil-Narvion; A. Gordillo-Guerrero; M. Guidetti; A. Maiorano; F. Mantovani; Enzo Marinari; V. Martin-Mayor; J. Monforte-Garcia; A. Muñoz Sudupe; D. Navarro; Giorgio Parisi; S. Perez-Gaviro; J. J. Ruiz-Lorenzo; Sebastiano Fabio Schifano; B. Seoane; A. Tarancón; R. Tripiccione; D. Yllanes
We numerically study the aging properties of the dynamical heterogeneities in the Ising spin glass. We find that a phase transition takes place during the aging process. Statics-dynamics correspondence implies that systems of finite size in equilibrium have static heterogeneities that obey finite-size scaling, thus signaling an analogous phase transition in the thermodynamical limit. We compute the critical exponents and the transition point in the equilibrium setting, and use them to show that aging in dynamic heterogeneities can be described by a finite-time scaling ansatz, with potential implications for experimental work.