F. Steinhilber
Swiss Federal Institute of Aquatic Science and Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by F. Steinhilber.
Proceedings of the National Academy of Sciences of the United States of America | 2012
F. Steinhilber; J. A. Abreu; Jürg Beer; Irene Brunner; Marcus Christl; Hubertus Fischer; U. Heikkilä; Peter W. Kubik; Mathias Mann; K. G. McCracken; Heinrich Miller; Hiroko Miyahara; Hans Oerter; Frank Wilhelms
Understanding the temporal variation of cosmic radiation and solar activity during the Holocene is essential for studies of the solar-terrestrial relationship. Cosmic-ray produced radionuclides, such as 10Be and 14C which are stored in polar ice cores and tree rings, offer the unique opportunity to reconstruct the history of cosmic radiation and solar activity over many millennia. Although records from different archives basically agree, they also show some deviations during certain periods. So far most reconstructions were based on only one single radionuclide record, which makes detection and correction of these deviations impossible. Here we combine different 10Be ice core records from Greenland and Antarctica with the global 14C tree ring record using principal component analysis. This approach is only possible due to a new high-resolution 10Be record from Dronning Maud Land obtained within the European Project for Ice Coring in Antarctica in Antarctica. The new cosmic radiation record enables us to derive total solar irradiance, which is then used as a proxy of solar activity to identify the solar imprint in an Asian climate record. Though generally the agreement between solar forcing and Asian climate is good, there are also periods without any coherence, pointing to other forcings like volcanoes and greenhouse gases and their corresponding feedbacks. The newly derived records have the potential to improve our understanding of the solar dynamics and to quantify the solar influence on climate.
Geophysical Research Letters | 2008
J. A. Abreu; Jürg Beer; F. Steinhilber; Steven M. Tobias; N. O. Weiss
[1] Understanding the Sun’s magnetic activity is important because of its impact on the Earth’s environment. The sunspot record since 1610 shows irregular 11-year cycles of activity; they are modulated on longer timescales and were interrupted by the Maunder minimum in the 17th century. Future behavior cannot easily be predicted – even in the short-term. Recent activity has been abnormally high for at least 8 cycles: is this grand maximum likely to terminate soon or even to be followed by another (Maunder-like) grand minimum? To answer these questions we use, as a measure of the Sun’s open magnetic field, a composite record of the solar modulation function F, reconstructed principally from the proxy record of cosmogenic 10 Be abundances in the GRIP icecore from Greenland. This F record extends back for almost 10,000 years, showing many grand maxima and grand minima (defined as intervals when F is within the top or bottom 20% of a Gaussian distribution). We carry out a statistical analysis of this record and calculate the life expectancy of the current grand maximum. We find that it is only expected to last for a further 15–36 years, with the more reliable methods yielding shorter expectancies, and we therefore predict a decline in solar activity within the next two or three cycles. We are not able, however, to predict the level of the ensuing minimum. Citation: Abreu, J. A., J. Beer, F. Steinhilber, S. M. Tobias, and N. O. Weiss (2008), For how long will the current grand maximum of solar activity persist?, Geophys. Res. Lett., 35, L20109, doi:10.1029/2008GL035442.
Geophysical Research Letters | 2011
L. Barnard; Mike Lockwood; Mike Hapgood; Matt J. Owens; C. J. Davis; F. Steinhilber
The recent decline in the open magnetic flux of the Sun heralds the end of the Grand Solar Maximum (GSM) that has persisted throughout the space age, during which the largest-fluence Solar Energetic Particle (SEP) events have been rare and Galactic Cosmic Ray (GCR) fluxes have been relatively low. In the absence of a predictive model of the solar dynamo, we here make analogue forecasts by studying past variations of solar activity in order to evaluate how long-term change in space climate may influence the hazardous energetic particle environment of the Earth in the future. We predict the probable future variations in GCR flux, near-Earth interplanetary magnetic field (IMF), sunspot number, and the probability of large SEP events, all deduced from cosmogenic isotope abundance changes following 24 GSMs in a 9300-year record. Citation: Barnard, L., M. Lockwood, M. A. Hapgood, M. J. Owens, C. J. Davis, and F. Steinhilber (2011), Predicting space climate change, Geophys. Res. Lett., 38, L16103, doi: 10.1029/2011GL048489.
Astronomy and Astrophysics | 2012
J. A. Abreu; J. Beer; A. Ferriz-Mas; K. G. McCracken; F. Steinhilber
Context. Understanding the Sun’s magnetic activity is important because of its impact on the Earth’s environment. Direct observations of the sunspots since 1610 reveal an irregular activity cycle with an average period of about 11 years, which is modulated on longer timescales. Proxies of solar activity such as 14 C and 10 Be show consistently longer cycles with well-defined periodicities and varying amplitudes. Current models of solar activity assume that the origin and modulation of solar activity lie within the Sun itself; however, correlations between direct solar activity indices and planetary configurations have been reported on many occasions. Since no successful physical mechanism was suggested to explain these correlations, the possible link between planetary motion and solar activity has been largely ignored. Aims. While energy considerations clearly show that the planets cannot be the direct cause of the solar activity, it remains an open question whether the planets can perturb the operation of the solar dynamo. Here we use a 9400 year solar activity reconstruction derived from cosmogenic radionuclides to test this hypothesis. Methods. We developed a simple physical model for describing the time-dependent torque exerted by the planets on a non-spherical tachocline and compared the corresponding power spectrum with that of the reconstructed solar activity record. Results. We find an excellent agreement between the long-term cycles in proxies of solar activity and the periodicities in the planetary torque and also that some periodicities remain phase-locked over 9400 years. Conclusions. Based on these observations we put forward the idea that the long-term solar magnetic activity is modulated by planetary e ects. If correct, our hypothesis has important implications for solar physics and the solar-terrestrial connection.
Journal of Geophysical Research | 2008
Holger Winkler; M. Sinnhuber; Justus Notholt; M.-B. Kallenrode; F. Steinhilber; Joachim Vogt; Bertalan Zieger; Karl-Heinz Glassmeier; A. Stadelmann
[1] Strength and structure of the Earth’s magnetic field control the deflection of energetic charged particles of solar and cosmic origin. Therefore variations of the geomagnetic field occurring on geological timescales affect the penetration of charged particles into the atmosphere. During solar proton events (SPEs) the flux of high-energy protons from the Sun is markedly increased. In order to investigate the impact of SPEs on the middle atmospheric ozone on longer timescales, two-dimensional atmospheric chemistry and transport simulations have been performed using simulated time series of SPEs covering 200 years. Monte Carlo calculations were used to obtain ionization rates, which were then applied to the atmosphere under the consideration of different shielding properties of the geomagnetic field. The present-day magnetic field configuration and four other scenarios were analyzed. For the first time, field configurations representing possible realistic situations during reversals have been investigated with respect to SPE-caused ozone losses. With decreasing magnetic field strength the impacts on the ozone are found to significantly increase especially in the Southern Hemisphere, and subsequently, the flux of harmful ultraviolet radiation increases at the Earth’s surface. The ozone destructions are most pronounced in the polar regions, and for some field configurations they exceed the values of ozone hole situations after large SPEs. In contrast to ozone holes the depletions due to SPEs are not restricted to winter and spring times but persist into polar summer.
Environmental Research Letters | 2011
Mike Lockwood; R. G. Harrison; M. J. Owens; L. Barnard; Tim Woollings; F. Steinhilber
Recent research has suggested that relatively cold UK winters are more common when solar activity is low (Lockwood et al 2010 Environ. Res. Lett. 5 024001). Solar activity during the current sunspot minimum has fallen to levels unknown since the start of the 20th century (Lockwood 2010 Proc. R. Soc. A 466 303–29) and records of past solar variations inferred from cosmogenic isotopes (Abreu et al 2008 Geophys. Res. Lett. 35 L20109) and geomagnetic activity data (Lockwood et al 2009 Astrophys. J. 700 937–44) suggest that the current grand solar maximum is coming to an end and hence that solar activity can be expected to continue to decline. Combining cosmogenic isotope data with the long record of temperatures measured in central England, we estimate how solar change could influence the probability in the future of further UK winters that are cold, relative to the hemispheric mean temperature, if all other factors remain constant. Global warming is taken into account only through the detrending using mean hemispheric temperatures. We show that some predictive skill may be obtained by including the solar effect.
Astronomy and Astrophysics | 2010
F. Steinhilber
Context. Total solar irradiance (TSI) has been measured with space-based instruments since 1978. The TSI during the recent solar minimum in 2009 has been lower than the two former minima around the years 1986 and 1996, which points to a long-term decrease. Aims. In this study, we address the question of whether the observed decrease in the TSI is the result of evolving solar surface magnetism (sunspots and faculae). Methods. We use a TSI model that is solely based on solar surface magnetic phenomena (sunspots and faculae including network). The information needed for this model is derived from Carrington rotation magnetogram and photogram synoptic charts measured with the Michelson Doppler Imager (MDI) instrument on-board the Solar and Heliospheric Observatory (SOHO). By combining these data with solar atmosphere calculations, TSI is reconstructed. Results. The TSI is reconstructed from June 1996 to May 2010. From the solar minimum of 1996 to the solar maximum of 2004 the model reproduces the observations well, but it fails to explain the observed decrease in TSI in the solar minimum of 2009 and the very recent data of 2010. Conclusions. The difference between modeled and observed TSI might be the result of underrepresented weak magnetic fields in the Carrington rotation synoptic charts, an uncertainty in the TSI measurement, or a decline of the global temperature of the photosphere. If latter were true, this would have important implications for reconstructions of TSI in the past. In order to study if an underrepresentation of weak magnetic fields in the Carrington rotation synoptic charts is the explanation for the difference between our model and the observation, full-disk images with higher spatial and temporal resolution should be analyzed in future.
Proceedings of the International Astronomical Union | 2008
J. Beer; J. A. Abreu; F. Steinhilber
The Sun plays a dominant role as the gravity centre and the energy source of a planetary system. A simple estimate shows that it is mainly the distance from the Sun that determines the climate of a planet. The solar electromagnetic radiation received by a, planet is very unevenly distributed on the dayside of the planet. The climate tries to equilibrate the system by transporting energy through the atmosphere and the oceans provided they exist. These quasi steady state conditions are continuously disturbed by a, variety of processes and effects. Potential causes of disturbance on the Sun are the energy generation in the core, the energy transport trough the convection zone, and the energy emission from the photosphere. Well understood are the effects of the orbital parameters responsible for the total amount, of solar power received by a planet and its relative distribution on the planets surface. On a planet, many factors determine how much of the arriving energy enters the climate system and how it is distributed and ultimately reemitted back into space. On Earth, there is growing evidence that in the past solar variability played a significant role in climate change.
Geophysical Research Letters | 2009
F. Steinhilber; Jürg Beer; Claus Frohlich
Astrophysics and Space Sciences Transactions | 2008
F. Steinhilber; J. A. Abreu; Jürg Beer