Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where F Therriault-Proulx is active.

Publication


Featured researches published by F Therriault-Proulx.


Medical Physics | 2011

A phantom study of an in vivo dosimetry system using plastic scintillation detectors for real-time verification of 192Ir HDR brachytherapy

F Therriault-Proulx; Tina Marie Briere; Firas Mourtada; Sylviane Aubin; Sam Beddar; Luc Beaulieu

PURPOSE The goal of the present work was to evaluate the accuracy of a plastic scintillation detector (PSD) system to perform in-phantom dosimetry during 192Ir high dose rate (HDR) brachytherapy treatments. METHODS A PSD system capable of stem effect removal was built. A red-green-blue photodiode connected to a dual-channel electrometer was used to detect the scintillation light emitted from a green scintillation component and transmitted along a plastic optical fiber. A clinically relevant prostate treatment plan was built using the HDR brachytherapy treatment planning system. An in-house fabricated template was used for accurate positioning of the catheters, and treatment delivery was performed in a water phantom. Eleven catheters were inserted and used for dose delivery from 192Ir radioactive source, while two others were used to mimic dosimetry at the rectum wall and in the urethra using a PSD. The measured dose and dose rate data were compared to the expected values from the planning system. The importance of removing stem effects from in vivo dosimetry using a PSD during 192Ir HDR brachytherapy treatments was assessed. Applications for dwell position error detection and temporal verification of the treatment delivery were also investigated. RESULTS In-phantom dosimetry measurements of the treatment plan led to a ratio to the expected dose of 1.003 +/- 0.004 with the PSD at different positions in the urethra and 1.043 +/- 0.003 with the PSD inserted in the rectum. Verification for the urethra of dose delivered within each catheter and at specific dwell positions led to average measured to expected ratios of 1.015 +/- 0.019 and 1.014 +/- 0.020, respectively. These values at the rectum wall were 1.059 +/- 0.045 within each catheter and 1.025 +/- 0.028 for specific dwell positions. The ability to detect positioning errors of the source depended of the tolerance on the difference to the expected value. A 5-mm displacement of the source was detected by the PSD system from 78% to 100% of the time depending on the acceptable range value. The implementation of a stem effect removal technique was shown to be necessary, particularly when calculating doses at specific dwell positions, and allowed decreasing the number of false-error detections-the detection of an error when it should not be the case--from 19 to 1 for a 5% threshold out of 43 measurements. The use of the PSD system to perform temporal verification of elapsed time by the source in each catheter--generally on the order of minutes--was shown to be in agreement within a couple of seconds with the treatment plan CONCLUSIONS We showed that the PSD system used in this study, which was capable of stem effect removal, can perform accurate dosimetry during 192Ir HDR brachytherapy treatment in a water phantom. The system presented here shows some clear advantages over previously proposed dosimetry systems for HDR brachytherapy, and it has the potential for various online verifications of treatment delivery quality.


Physics in Medicine and Biology | 2013

On the nature of the light produced within PMMA optical light guides in scintillation fiber-optic dosimetry

F Therriault-Proulx; Luc Beaulieu; Louis Archambault; Sam Beddar

The goal of this study was to evaluate the nature of the stem effect light produced within an optical fiber, to quantify its composition, and to evaluate the efficiency of the chromatic technique to remove the stem effect. Spectrometry studies were performed during irradiations of a bare PMMA optical fiber with kilovoltage x-rays from a superficial therapy unit, an Ir-192 high-dose-rate brachytherapy source, a Co-60 external-therapy unit, and megavoltage electrons and x-rays from a linear accelerator. Stem effect spectra can be accurately modeled by a linear combination of the Cerenkov light and fluorescence emitted spectra. Fluorescence light contributes more for lower-energy modalities. Cerenkov light contributes more as the energy increases above the threshold for its production. The chromatic stem effect removal technique is accurate in most of the situations. However, noticeable differences were obtained between very specific high-energy irradiation conditions. It would be advantageous to implement an additional channel in the chromatic stem effect removal chain or implement a spectral approach to independently remove the Cerenkov and the fluorescence components from the signal of interest. This would increase the accuracy and versatility of the actual chromatic stem effect removal technique.


Medical Physics | 2011

Technical note: Removing the stem effect when performing Ir-192 HDR brachytherapy in vivo dosimetry using plastic scintillation detectors: A relevant and necessary step

F Therriault-Proulx; Sam Beddar; Tina Marie Briere; Louis Archambault; Luc Beaulieu

PURPOSE The purpose of this study was to investigate whether or not a stem effect removal technique is necessary when performing Ir-192 HDR brachytherapy in vivo dosimetry using a scintillation detector. METHODS A red-green-blue photodiode connected to a multichannel electrometer was used to detect the light emitted from a plastic scintillation detector (PSD) during irradiation with an Ir-192 HDR brachytherapy source. Accuracy in dose measurement was compared with and without the use of stem effect removal techniques. Monochromatic and polychromatic filtration techniques were studied. An in-house template was built for accurate positioning of catheters in which the source and the PSD were inserted. Dose distribution was measured up to 5 cm from source to detector in the radial and longitudinal directions. RESULTS The authors found the stem effect to be particularly important when the source was close to the optical fiber guide and far from the scintillation component of the detector. It can account for up to (72 +/- 3)% of the signal under clinically relevant conditions. The polychromatic filtration outperformed the monochromatic filtration as well as the absence of filtration in regard to dose measurement accuracy. CONCLUSIONS It is necessary to implement a stem effect removal technique when building a PSD for in vivo dosimetry during Ir-192 HDR brachytherapy. The PSD that the authors have developed for this study would be suitable for such an application.


Medical Physics | 2012

Validating plastic scintillation detectors for photon dosimetry in the radiologic energy range.

François Lessard; Louis Archambault; Mathieu Plamondon; Philippe Després; F Therriault-Proulx; Sam Beddar; Luc Beaulieu

PURPOSE Photon dosimetry in the kilovolt (kV) energy range represents a major challenge for diagnostic and interventional radiology and superficial therapy. Plastic scintillation detectors (PSDs) are potentially good candidates for this task. This study proposes a simple way to obtain accurate correction factors to compensate for the response of PSDs to photon energies between 80 and 150 kVp. The performance of PSDs is also investigated to determine their potential usefulness in the diagnostic energy range. METHODS A 1-mm-diameter, 10-mm-long PSD was irradiated by a Therapax SXT 150 unit using five different beam qualities made of tube potentials ranging from 80 to 150 kVp and filtration thickness ranging from 0.8 to 0.2 mmAl + 1.0 mmCu. The light emitted by the detector was collected using an 8-m-long optical fiber and a polychromatic photodiode, which converted the scintillation photons to an electrical current. The PSD response was compared with the reference free air dose rate measured with a calibrated Farmer NE2571 ionization chamber. PSD measurements were corrected using spectra-weighted corrections, accounting for mass energy-absorption coefficient differences between the sensitive volumes of the ionization chamber and the PSD, as suggested by large cavity theory (LCT). Beam spectra were obtained from x-ray simulation software and validated experimentally using a CdTe spectrometer. Correction factors were also obtained using Monte Carlo (MC) simulations. Percent depth dose (PDD) measurements were compensated for beam hardening using the LCT correction method. These PDD measurements were compared with uncorrected PSD data, PDD measurements obtained using Gafchromic films, Monte Carlo simulations, and previous data. RESULTS For each beam quality used, the authors observed an increase of the energy response with effective energy when no correction was applied to the PSD response. Using the LCT correction, the PSD response was almost energy independent, with a residual 2.1% coefficient of variation (COV) over the 80-150-kVp energy range. Monte Carlo corrections reduced the COV to 1.4% over this energy range. All PDD measurements were in good agreement with one another except for the uncorrected PSD data, in which an over-response was observed with depth (13% at 10 cm with a 100 kVp beam), showing that beam hardening had a non-negligible effect on the PSD response. A correction based on LCT compensated very well for this effect, reducing the over-response to 3%. CONCLUSION In the diagnostic energy range, PSDs show high-energy dependence, which can be corrected using spectra-weighted mass energy-absorption coefficients, showing no considerable sign of quenching between these energies. Correction factors obtained by Monte Carlo simulations confirm that the approximations made by LCT corrections are valid. Thus, PSDs could be useful for real-time dosimetry in radiology applications.


Physics in Medicine and Biology | 2012

Development of a novel multi-point plastic scintillation detector with a single optical transmission line for radiation dose measurement

F Therriault-Proulx; Louis Archambault; Luc Beaulieu; Sam Beddar

The goal of this study was to develop a novel multi-point plastic scintillation detector (mPSD) capable of measuring the dose accurately at multiple positions simultaneously using a single optical transmission line. A 2-point mPSD used a band-pass approach that included splitters, color filters and an EMCCD camera. The 3-point mPSD was based on a new full-spectrum approach, in which a spectrograph was coupled to a CCD camera. Irradiations of the mPSDs and of an ion chamber were performed with a 6 MV photon beam at various depths and lateral positions in a water tank. For the 2-point mPSD, the average relative differences between mPSD and ion chamber measurements for the depth-dose were 2.4±1.6% and 1.3±0.8% for BCF-60 and BCF-12, respectively. For the 3-point mPSD, the average relative differences over all conditions were 2.3±1.1%, 1.6±0.4% and 0.32±0.19% for BCF-60, BCF-12 and BCF-10, respectively. This study demonstrates the practical feasibility of mPSDs. This type of detector could be very useful for pre-treatment quality assurance applications as well as an accurate tool for real-time in vivo dosimetry.


Physics in Medicine and Biology | 2012

A mathematical formalism for hyperspectral, multipoint plastic scintillation detectors

Louis Archambault; F Therriault-Proulx; Sam Beddar; Luc Beaulieu

The aim of this paper is to generalize and extend the mathematical formalism used with plastic scintillation detectors (PSDs). By doing so, we show the feasibility of multi-point PSD. The new formalism is based on the sole hypothesis that a PSD optical signal is a linear superposition of spectra. Two calibration scenarios were developed. Both involve solving a linear equation of the form Y = XB, but the process and input data depend on the information available on the detector system. Simulations were carried out to validate both scenarios and demonstrate the advantages of the new formalism. In this paper, we prove the following results. (1) Multi-point PSDs are feasible. Simulations have shown that six different spectra could be resolved accurately even in the presence of up to 10% Gaussian noise. (2) The new formalism leads to more precise PSD measurements. (3) By using the condition number of the measurement matrix, the ideal sets of calibration measurements can be identified. (4) By using principal component analysis it was possible to identify the best set of wavelength filters. We have shown through numerical simulations that multi-point detectors are feasible. This has potential for applications such as in vivo dose verification. Furthermore, our new formalism can be used to improve the robustness and ease of use of PSDs.


Medical Physics | 2013

On the use of a single-fiber multipoint plastic scintillation detector for 192Ir high-dose-rate brachytherapy.

F Therriault-Proulx; Sam Beddar; Luc Beaulieu

PURPOSE The goal of this study was to prove the feasibility of using a single-fiber multipoint plastic scintillation detector (mPSD) as anin vivo verification tool during 192 Ir high-dose-rate brachytherapy treatments. METHODS A three-point detector was built and inserted inside a catheter-positioning template placed in a water phantom. A hyperspectral approach was implemented to discriminate the different optical signals composing the light output at the exit of the single collection optical fiber. The mPSD was tested with different source-to-detector positions, ranging from 1 to 5 cm radially and over 10.5 cm along the longitudinal axis of the detector, and with various integration times. Several strategies for improving the accuracy of the detector were investigated. The devices accuracy in detecting source position was also tested. RESULTS Good agreement with the expected doses was obtained for all of the scintillating elements, with average relative differences from the expected values of 3.4 ± 2.1%, 3.0 ± 0.7%, and 4.5 ± 1.0% for scintillating elements from the distal to the proximal. A dose threshold of 3 cGy improved the general accuracy of the detector. An integration time of 3 s offered a good trade-off between precision and temporal resolution. Finally, the mPSD measured the radioactive source positioning uncertainty to be no more than 0.32 ± 0.06 mm. The accuracy and precision of the detector were improved by a dose-weighted function combining the three measurement points and known details about the geometry of the detector construction. CONCLUSIONS The use of a mPSD for high-dose-rate brachytherapy dosimetry is feasible. This detector shows great promise for development ofin vivo applications for real-time verification of treatment delivery.PURPOSE The goal of this study was to prove the feasibility of using a single-fiber multipoint plastic scintillation detector (mPSD) as an in vivo verification tool during (192)Ir high-dose-rate brachytherapy treatments. METHODS A three-point detector was built and inserted inside a catheter-positioning template placed in a water phantom. A hyperspectral approach was implemented to discriminate the different optical signals composing the light output at the exit of the single collection optical fiber. The mPSD was tested with different source-to-detector positions, ranging from 1 to 5 cm radially and over 10.5 cm along the longitudinal axis of the detector, and with various integration times. Several strategies for improving the accuracy of the detector were investigated. The devices accuracy in detecting source position was also tested. RESULTS Good agreement with the expected doses was obtained for all of the scintillating elements, with average relative differences from the expected values of 3.4 ± 2.1%, 3.0 ± 0.7%, and 4.5 ± 1.0% for scintillating elements from the distal to the proximal. A dose threshold of 3 cGy improved the general accuracy of the detector. An integration time of 3 s offered a good trade-off between precision and temporal resolution. Finally, the mPSD measured the radioactive source positioning uncertainty to be no more than 0.32 ± 0.06 mm. The accuracy and precision of the detector were improved by a dose-weighted function combining the three measurement points and known details about the geometry of the detector construction. CONCLUSIONS The use of a mPSD for high-dose-rate brachytherapy dosimetry is feasible. This detector shows great promise for development of in vivo applications for real-time verification of treatment delivery.


Medical Physics | 2011

Technical Note: Determining regions of interest for CCD camera-based fiber optic luminescence dosimetry by examining signal-to-noise ratio

D Klein; F Therriault-Proulx; Louis Archambault; Tina Marie Briere; Luc Beaulieu; A. Sam Beddar

PURPOSE The goal of this work was to develop a method for determining regions of interest (ROIs) based on signal-to-noise ratio (SNR) for the analysis of charge-coupled device (CCD) images used in luminescence-based radiation dosimetry. METHODS The ROI determination method was developed using images containing high-and low-intensity signals taken with a CCD-based, fiber optic plastic scintillation detector system. A series of threshold intensity values was defined for each signal, and ROIs were fitted around the pixels that exceeded each threshold. The SNR for each ROI was calculated and the relationship between SNR and ROI area was examined. RESULTS The SNR was found to increase rapidly over small ROIs for both signal levels. After reaching a maximum, the SNR of the low-intensity signal decreased steadily over larger ROIs, but the high-intensity SNR did not decrease appreciably over the ROI sizes studied. The spatial extent of the normalized images showed intensity independence, suggesting that a fixed ROI is useful for varying signal levels. CONCLUSIONS The method described here constitutes a simple yet effective method for defining ROIs based on SNR that could enhance the low-level detection capabilities of CCD-based luminescence dosimetry systems.


Physics in Medicine and Biology | 2015

A method to correct for temperature dependence and measure simultaneously dose and temperature using a plastic scintillation detector.

F Therriault-Proulx; L Wootton; Sam Beddar

Plastic scintillation detectors (PSDs) work well for radiation dosimetry. However, they show some temperature dependence, and a priori knowledge of the temperature surrounding the PSD is required to correct for this dependence. We present a novel approach to correct PSD response values for temperature changes instantaneously and without the need for prior knowledge of the temperature value. In addition to rendering the detector temperature-independent, this approach allows for actual temperature measurement using solely the PSD apparatus. With a temperature-controlled water tank, the temperature was varied from room temperature to more than 40 °C and the PSD was used to measure the dose delivered from a cobalt-60 photon beam unit to within an average of 0.72% from the expected value. The temperature was measured during each acquisition with the PSD and a thermocouple and values were within 1 °C of each other. The depth-dose curve of a 6 MV photon beam was also measured under warm non-stable conditions and this curve agreed to within an average of  -0.98% from the curve obtained at room temperature. The feasibility of rendering PSDs temperature-independent was demonstrated with our approach, which also enabled simultaneous measurement of both dose and temperature. This novel approach improves both the robustness and versatility of PSDs.


Medical Physics | 2015

MO-F-CAMPUS-T-03: Verification of Range, SOBP Width, and Output for Passive-Scattering Proton Beams Using a Liquid Scintillator Detector

T Henry; D Robertson; F Therriault-Proulx; S Beddar

Purpose: Liquid scintillators have been shown to provide fast and high-resolution measurements of radiation beams. However, their linear energy transfer-dependent response (quenching) limits their use in proton beams. The purpose of this study was to develop a simple and fast method to verify the range, spread-out Bragg peak (SOBP) width, and output of a passive-scattering proton beam with a liquid scintillator detector, without the need for quenching correction. Methods: The light signal from a 20×20×20 cm3 liquid scintillator tank was collected with a CCD camera. Reproducible landmarks on the SOBP depth-light curve were identified which possessed a linear relationship with the beam range and SOBP width. The depth-light profiles for three beam energies (140, 160 and 180 MeV) with six SOBP widths at each energy were measured with the detector. Beam range and SOBP width calibration factors were obtained by comparing the depth-light curve landmarks with the nominal range and SOBP width for each beam setting. The daily output stability of the liquid scintillator detector was also studied by making eight repeated output measurements in a cobalt-60 beam over the course of two weeks. Results: The mean difference between the measured and nominal beam ranges was 0.6 mm (σ=0.2 mm), with a maximum difference of 0.9 mm. The mean difference between the measured and nominal SOBP widths was 0.1 mm (σ=1.8 mm), with a maximum difference of 4.0 mm. Finally an output variation of 0.14% was observed for 8 measurements performed over 2 weeks. Conclusion: A method has been developed to determine the range and SOBP width of a passive-scattering proton beam in a liquid scintillator without the need for quenching correction. In addition to providing rapid and accurate beam range and SOBP measurements, the detector is capable of measuring the output consistency with a high degree of precision. This project was supported in part by award number CA182450 from the National Cancer Institute.

Collaboration


Dive into the F Therriault-Proulx's collaboration.

Top Co-Authors

Avatar

S Beddar

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sam Beddar

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tina Marie Briere

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

D Klein

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Geoffrey S. Ibbott

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

L Wootton

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Z Wen

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge