Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Geoffrey S. Ibbott is active.

Publication


Featured researches published by Geoffrey S. Ibbott.


Medical Physics | 2004

Update of AAPM Task Group No. 43 Report: A revised AAPM protocol for brachytherapy dose calculations

Mark J. Rivard; Bert M. Coursey; Larry A. DeWerd; William F. Hanson; M. Saiful Huq; Geoffrey S. Ibbott; Michael G. Mitch; Ravinder Nath; Jeffrey F. Williamson

Since publication of the American Association of Physicists in Medicine (AAPM) Task Group No. 43 Report in 1995 (TG-43), both the utilization of permanent source implantation and the number of low-energy interstitial brachytherapy source models commercially available have dramatically increased. In addition, the National Institute of Standards and Technology has introduced a new primary standard of air-kerma strength, and the brachytherapy dosimetry literature has grown substantially, documenting both improved dosimetry methodologies and dosimetric characterization of particular source models. In response to these advances, the AAPM Low-energy Interstitial Brachytherapy Dosimetry subcommittee (LIBD) herein presents an update of the TG-43 protocol for calculation of dose-rate distributions around photon-emitting brachytherapy sources. The updated protocol (TG-43U1) includes (a) a revised definition of air-kerma strength; (b) elimination of apparent activity for specification of source strength; (c) elimination of the anisotropy constant in favor of the distance-dependent one-dimensional anisotropy function; (d) guidance on extrapolating tabulated TG-43 parameters to longer and shorter distances; and (e) correction for minor inconsistencies and omissions in the original protocol and its implementation. Among the corrections are consistent guidelines for use of point- and line-source geometry functions. In addition, this report recommends a unified approach to comparing reference dose distributions derived from different investigators to develop a single critically evaluated consensus dataset as well as guidelines for performing and describing future theoretical and experimental single-source dosimetry studies. Finally, the report includes consensus datasets, in the form of dose-rate constants, radial dose functions, and one-dimensional (1D) and two-dimensional (2D) anisotropy functions, for all low-energy brachytherapy source models that met the AAPM dosimetric prerequisites [Med. Phys. 25, 2269 (1998)] as of July 15, 2001. These include the following 125 I sources: Amersham Health models 6702 and 6711, Best Medical model 2301, North American Scientific Inc. (NASI) model MED3631-A/M, Bebig/Theragenics model I25.S06, and the Imagyn Medical Technologies Inc. isostar model IS-12501. The 103 Pd sources included are the Theragenics Corporation model 200 and NASI model MED3633. The AAPM recommends that the revised dose-calculation protocol and revised source-specific dose-rate distributions be adopted by all end users for clinical treatment planning of low energy brachytherapy interstitial sources. Depending upon the dose-calculation protocol and parameters currently used by individual physicists, adoption of this protocol may result in changes to patient dose calculations. These changes should be carefully evaluated and reviewed with the radiation oncologist preceding implementation of the current protocol.


Radiology | 2009

Radiologic and Nuclear Medicine Studies in the United States and Worldwide: Frequency, Radiation Dose, and Comparison with Other Radiation Sources—1950–2007

Fred A. Mettler; Mythreyi Bhargavan; Keith Faulkner; Debbie B. Gilley; Joel E. Gray; Geoffrey S. Ibbott; Jill A. Lipoti; Mahadevappa Mahesh; John L. McCrohan; Michael G. Stabin; Bruce R. Thomadsen; Terry T. Yoshizumi

The U.S. National Council on Radiation Protection and Measurements and United Nations Scientific Committee on Effects of Atomic Radiation each conducted respective assessments of all radiation sources in the United States and worldwide. The goal of this article is to summarize and combine the results of these two publicly available surveys and to compare the results with historical information. In the United States in 2006, about 377 million diagnostic and interventional radiologic examinations and 18 million nuclear medicine examinations were performed. The United States accounts for about 12% of radiologic procedures and about one-half of nuclear medicine procedures performed worldwide. In the United States, the frequency of diagnostic radiologic examinations has increased almost 10-fold (1950-2006). The U.S. per-capita annual effective dose from medical procedures has increased about sixfold (0.5 mSv [1980] to 3.0 mSv [2006]). Worldwide estimates for 2000-2007 indicate that 3.6 billion medical procedures with ionizing radiation (3.1 billion diagnostic radiologic, 0.5 billion dental, and 37 million nuclear medicine examinations) are performed annually. Worldwide, the average annual per-capita effective dose from medicine (about 0.6 mSv of the total 3.0 mSv received from all sources) has approximately doubled in the past 10-15 years.


International Journal of Radiation Oncology Biology Physics | 2011

Fractionation for whole breast irradiation: An American society for radiation oncology (ASTRO) evidence-based guideline

Benjamin D. Smith; Søren M. Bentzen; Candace R. Correa; Carol A. Hahn; Patricia H. Hardenbergh; Geoffrey S. Ibbott; Beryl McCormick; Julie R. McQueen; Lori J. Pierce; Simon N. Powell; Abram Recht; Alphonse G. Taghian; Frank A. Vicini; Bruce G. Haffty

PURPOSE In patients with early-stage breast cancer treated with breast-conserving surgery, randomized trials have found little difference in local control and survival outcomes between patients treated with conventionally fractionated (CF-) whole breast irradiation (WBI) and those receiving hypofractionated (HF)-WBI. However, it remains controversial whether these results apply to all subgroups of patients. We therefore developed an evidence-based guideline to provide direction for clinical practice. METHODS AND MATERIALS A task force authorized by the American Society for Radiation Oncology weighed evidence from a systematic literature review and produced the recommendations contained herein. RESULTS The majority of patients in randomized trials were aged 50 years or older, had disease Stage pT1-2 pN0, did not receive chemotherapy, and were treated with a radiation dose homogeneity within ±7% in the central axis plane. Such patients experienced equivalent outcomes with either HF-WBI or CF-WBI. Patients not meeting these criteria were relatively underrepresented, and few of the trials reported subgroup analyses. For patients not receiving a radiation boost, the task force favored a dose schedule of 42.5 Gy in 16 fractions when HF-WBI is planned. The task force also recommended that the heart should be excluded from the primary treatment fields (when HF-WBI is used) due to lingering uncertainty regarding late effects of HF-WBI on cardiac function. The task force could not agree on the appropriateness of a tumor bed boost in patients treated with HF-WBI. CONCLUSION Data were sufficient to support the use of HF-WBI for patients with early-stage breast cancer who met all the aforementioned criteria. For other patients, the task force could not reach agreement either for or against the use of HF-WBI, which nevertheless should not be interpreted as a contraindication to its use.


Medical Physics | 2007

Supplement to the 2004 Update of the AAPM Task Group No. 43 Report

Mark J. Rivard; Wayne M. Butler; Larry A. DeWerd; M. Saiful Huq; Geoffrey S. Ibbott; Ali S. Meigooni; Christopher S. Melhus; Michael G. Mitch; Ravinder Nath; Jeffrey F. Williamson

Since publication of the 2004 update to the American Association of Physicists in Medicine (AAPM) Task Group No. 43 Report (TG-43U1), several new low-energy photon-emitting brachytherapy sources have become available. Many of these sources have satisfied the AAPM prerequisites for routine clinical use as of January 10, 2005, and are posted on the Joint AAPM/RPC Brachytherapy Seed Registry. Consequently, the AAPM has prepared this supplement to the 2004 AAPM TG-43 update. This paper presents the AAPM-approved consensus datasets for these sources, and includes the following 125I sources: Amersham model 6733, Draximage model LS-1, Implant Sciences model 3500, IBt model 1251L, IsoAid model IAI-125A, Mentor model SL-125/ SH-125, and SourceTech Medical model STM1251. The Best Medical model 2335 103Pd source is also included. While the methodology used to determine these data sets is identical to that published in the AAPM TG-43U1 report, additional information and discussion are presented here on some questions that arose since the publication of the TG-43U1 report. Specifically, details of interpolation and extrapolation methods are described further, new methodologies are recommended, and example calculations are provided. Despite these changes, additions, and clarifications, the overall methodology, the procedures for developing consensus data sets, and the dose calculation formalism largely remain the same as in the TG-43U1 report. Thus, the AAPM recommends that the consensus data sets and resultant source-specific dose-rate distributions included in this supplement be adopted by all end users for clinical treatment planning of low-energy photon-emitting brachytherapy sources. Adoption of these recommendations may result in changes to patient dose calculations, and these changes should be carefully evaluated and reviewed with the radiation oncologist prior to implementation of the current protocol.


Medical Physics | 2011

A dosimetric uncertainty analysis for photon-emitting brachytherapy sources: Report of AAPM Task Group No. 138 and GEC-ESTRO

Larry A. DeWerd; Geoffrey S. Ibbott; Ali S. Meigooni; Michael G. Mitch; Mark J. Rivard; Kurt E. Stump; Bruce R. Thomadsen; Jack Venselaar

This report addresses uncertainties pertaining to brachytherapy single-source dosimetry preceding clinical use. The International Organization for Standardization (ISO) Guide to the Expression of Uncertainty in Measurement (GUM) and the National Institute of Standards and Technology (NIST) Technical Note 1297 are taken as reference standards for uncertainty formalism. Uncertainties in using detectors to measure or utilizing Monte Carlo methods to estimate brachytherapy dose distributions are provided with discussion of the components intrinsic to the overall dosimetric assessment. Uncertainties provided are based on published observations and cited when available. The uncertainty propagation from the primary calibration standard through transfer to the clinic for air-kerma strength is covered first. Uncertainties in each of the brachytherapy dosimetry parameters of the TG-43 formalism are then explored, ending with transfer to the clinic and recommended approaches. Dosimetric uncertainties during treatment delivery are considered briefly but are not included in the detailed analysis. For low- and high-energy brachytherapy sources of low dose rate and high dose rate, a combined dosimetric uncertainty <5% (k=1) is estimated, which is consistent with prior literature estimates. Recommendations are provided for clinical medical physicists, dosimetry investigators, and source and treatment planning system manufacturers. These recommendations include the use of the GUM and NIST reports, a requirement of constancy of manufacturer source design, dosimetry investigator guidelines, provision of the lowest uncertainty for patient treatment dosimetry, and the establishment of an action level based on dosimetric uncertainty. These recommendations reflect the guidance of the American Association of Physicists in Medicine (AAPM) and the Groupe Européen de Curiethérapie-European Society for Therapeutic Radiology and Oncology (GEC-ESTRO) for their members and may also be used as guidance to manufacturers and regulatory agencies in developing good manufacturing practices for sources used in routine clinical treatments.


International Journal of Radiation Oncology Biology Physics | 2008

A Method for Evaluating Quality Assurance Needs in Radiation Therapy

M. Saiful Huq; Benedick A. Fraass; Peter Dunscombe; J Gibbons; Geoffrey S. Ibbott; Paul M. Medin; Arno J. Mundt; Sassa Mutic; Jatinder R. Palta; Bruce R. Thomadsen; Jeffrey F. Williamson; Ellen Yorke

The increasing complexity of modern radiation therapy planning and delivery techniques challenges traditional prescriptive quality control and quality assurance programs that ensure safety and reliability of treatment planning and delivery systems under all clinical scenarios. Until now quality management (QM) guidelines published by concerned organizations (e.g., American Association of Physicists in Medicine [AAPM], European Society for Therapeutic Radiology and Oncology [ESTRO], International Atomic Energy Agency [IAEA]) have focused on monitoring functional performance of radiotherapy equipment by measurable parameters, with tolerances set at strict but achievable values. In the modern environment, however, the number and sophistication of possible tests and measurements have increased dramatically. There is a need to prioritize QM activities in a way that will strike a balance between being reasonably achievable and optimally beneficial to patients. A systematic understanding of possible errors over the course of a radiation therapy treatment and the potential clinical impact of each is needed to direct limited resources in such a way to produce maximal benefit to the quality of patient care. Task Group 100 of the AAPM has taken a broad view of these issues and is developing a framework for designing QM activities, and hence allocating resources, based on estimates of clinical outcome, risk assessment, and failure modes. The report will provide guidelines on risk assessment approaches with emphasis on failure mode and effect analysis (FMEA) and an achievable QM program based on risk analysis. Examples of FMEA to intensity-modulated radiation therapy and high-dose-rate brachytherapy are presented. Recommendations on how to apply this new approach to individual clinics and further research and development will also be discussed.


Medical Physics | 1999

Guidance to users of Nycomed Amersham and North American Scientific, Inc., I‐125 Interstitial Sources: Dosimetry and calibration changes: Recommendations of the American Association of Physicists in Medicine Radiation Therapy Committee Ad Hoc Subcommittee on Low‐Energy Seed Dosimetry

Jeffrey F. Williamson; Bert M. Coursey; Larry A. DeWerd; William F. Hanson; Ravinder Nath; Geoffrey S. Ibbott

Dose calculations to patients undergoing implantation of 125I interstitial brachytherapy sources are affected by two recent changes in low-energy seed dosimetry: (a) implantation of a new primary air-kerma strength standard at the National Institute of Standards and Technology (NIST) on 1 January 1999 and (b) publication of revised dose-rate distributions in AAPMs Task Group 43 Report. The guidance herein represents AAPMs recommendations for users of 125I interstitial seed products marketed prior to 1 January 1999 (Nycomed Amersham models 6711 and 6702 and North American Scientific, Inc. models 3631 A/S and 3631 A/M. Implementation of Task Group 43 (TG43) 125I dose calculations involves revising data stored in files of radiation treatment planning software and lowering the prescribed dose to be delivered to patients by as much as 15% to avoid modifying the dose actually delivered to patients. The magnitude of the dose prescription change depends on the dosimetry data used prior to TG43 and the implant geometry. Adapting to the revised NIST calibration standard requires the user to increase the dose-rate constant (or its equivalent by 11.5%) but does not require modification of the prescribed dose. Failure to correctly implement these modifications can result in 20% or even 30% errors.


Acta Oncologica | 2006

Accreditation and quality assurance for Radiation Therapy Oncology Group: Multicenter clinical trials using Stereotactic Body Radiation Therapy in lung cancer

Robert D. Timmerman; James M. Galvin; Jeff M. Michalski; William L. Straube; Geoffrey S. Ibbott; Elizabeth Martin; Ramzi Abdulrahman; S. Swann; Jack F. Fowler; Hak Choy

Starting in 2002, the Radiation Therapy Oncology Group in North America began the process of developing multicenter prospective trials in lung cancer using Stereotactic Body Radiation Therapy (SBRT). Much of the work was based on the prospective single institution trials from Indiana University that had been presented and published. In late 2004, RTOG 0236 using SBRT for medically inoperable patients with clinical stage I non-small cell lung cancer (NSCLC) was activated for accrual. Prior to activation, representatives from the Lung, Image-Guided Therapy, Physics, and Radiobiology Committees met on regular occasions to design the multicenter study and quality assurance measures. SBRT is not a black box, and the essence of the therapy had to be distilled via guidelines. Issues related to patient selection, method of dosimetry construction, equipment requirements, motion assessments and control, site accreditation, data exchange, and follow-up policies were worked out by compromise and consensus. RTOG 0236 has nearly completed its accrual. The Lung Committee has initiated the development of several other trials, each building on the last, to investigate the therapy in central tumors, in combinations with systemic therapy, in operable patients, and in lung metastases patients. The guidelines developed for RTOG 0236 will be refined to take advantage of more modern innovations including heterogeneity corrections and intensity modulation when appropriate. The development of RTOG 0618 using SBRT in operable patients with early stage NSCLC is a testament to both the enthusiasm from already published works and prospective multicenter clinical testing using SBRT techniques.


Medical Physics | 2008

A comprehensive evaluation of the PRESAGE/optical-CT 3D dosimetry system

H Sakhalkar; J Adamovics; Geoffrey S. Ibbott; M Oldham

This work presents extensive investigations to evaluate the robustness (intradosimeter consistency and temporal stability of response), reproducibility, precision, and accuracy of a relatively new 3D dosimetry system comprising a leuco-dye doped plastic 3D dosimeter (PRESAGE) and a commercial optical-CT scanner (OCTOPUS 5x scanner from MGS Research, Inc). Four identical PRESAGE 3D dosimeters were created such that they were compatible with the Radiologic Physics Center (RPC) head-and-neck (H&N) IMRT credentialing phantom. Each dosimeter was irradiated with a rotationally symmetric arrangement of nine identical small fields (1 x 3 cm2) impinging on the flat circular face of the dosimeter. A repetitious sequence of three dose levels (4, 2.88, and 1.28 Gy) was delivered. The rotationally symmetric treatment resulted in a dose distribution with high spatial variation in axial planes but only gradual variation with depth along the long axis of the dosimeter. The significance of this treatment was that it facilitated accurate film dosimetry in the axial plane, for independent verification. Also, it enabled rigorous evaluation of robustness, reproducibility and accuracy of response, at the three dose levels. The OCTOPUS 5x commercial scanner was used for dose readout from the dosimeters at daily time intervals. The use of improved optics and acquisition technique yielded substantially improved noise characteristics (reduced to approximately 2%) than has been achieved previously. Intradosimeter uniformity of radiochromic response was evaluated by calculating a 3D gamma comparison between each dosimeter and axially rotated copies of the same dosimeter. This convenient technique exploits the rotational symmetry of the distribution. All points in the gamma comparison passed a 2% difference, 1 mm distance-to-agreement criteria indicating excellent intradosimeter uniformity even at low dose levels. Postirradiation, the dosimeters were all found to exhibit a slight increase in opaqueness with time. However, the relative dose distribution was found to be extremely stable up to 90 h postirradiation indicating excellent temporal stability. Excellent interdosimeter reproducibility was also observed between the four dosimeters. Gamma comparison maps between each dosimeter and the average distribution of all four dosimeters showed full agreement at the 2% difference, 2 mm distance-to-agreement level. Dose readout from the 3D dosimetry system was found to agree better with independent film measurement than with treatment planning system calculations in penumbral regions and was generally accurate to within 2% dose difference and 2 mm distance-to-agreement. In conclusion, these studies demonstrate excellent precision, accuracy, robustness, and reproducibility of the PRESAGE/optical-CT system for relative 3D dosimetry and support its potential integration with the RPC H&N credentialing phantom for IMRT verification.


International Journal of Radiation Oncology Biology Physics | 2008

Phase II Trial of Combined High-Dose-Rate Brachytherapy and External Beam Radiotherapy for Adenocarcinoma of the Prostate: Preliminary Results of RTOG 0321

I-Chow Hsu; Kyounghwa Bae; Katsuto Shinohara; Jean Pouliot; James A. Purdy; Geoffrey S. Ibbott; Joycelyn Speight; E. Vigneault; Robert Ivker; Howard M. Sandler

PURPOSE To estimate the rate of late Grade 3 or greater genitourinary (GU) and gastrointestinal (GI) adverse events (AEs) after treatment with external beam radiotherapy and prostate high-dose-rate (HDR) brachytherapy. METHODS AND MATERIALS Each participating institution submitted computed tomography-based HDR brachytherapy dosimetry data electronically for credentialing and for each study patient. Patients with locally confined Stage T1c-T3b prostate cancer were eligible for the present study. All patients were treated with 45 Gy in 25 fractions using external beam radiotherapy and one HDR implant delivering 19 Gy in two fractions. All AEs were graded according to the Common Terminology Criteria for Adverse Events, version 3.0. Late GU/GI AEs were defined as those occurring >9 months from the start of the protocol treatment, in patients with ≥18 months of potential follow-up. RESULTS A total of 129 patients from 14 institutions were enrolled in the present study. Of the 129 patients, 125 were eligible, and AE data were available for 112 patients at analysis. The pretreatment characteristics of the patients were as follows: Stage T1c-T2c, 91%; Stage T3a-T3b, 9%; prostate-specific antigen level ≤10 ng/mL, 70%; prostate-specific antigen level >10 but ≤20 ng/mL, 30%; and Gleason score 2-6, 10%; Gleason score 7, 72%; and Gleason score 8-10, 18%. At a median follow-up of 29.6 months, three acute and four late Grade 3 GU/GI AEs were reported. The estimated rate of late Grade 3-5 GU and GI AEs at 18 months was 2.56%. CONCLUSION This is the first prospective, multi-institutional trial of computed tomography-based HDR brachytherapy and external beam radiotherapy. The technique and doses used in the present study resulted in acceptable levels of AEs.

Collaboration


Dive into the Geoffrey S. Ibbott's collaboration.

Top Co-Authors

Avatar

D Followill

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Larry A. DeWerd

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A Molineu

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

P Alvarez

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey F. Williamson

Virginia Commonwealth University

View shared research outputs
Top Co-Authors

Avatar

M Gillin

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge