Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where F. Verrecchia is active.

Publication


Featured researches published by F. Verrecchia.


Journal of Geophysical Research | 2010

Detection of terrestrial gamma ray flashes up to 40 MeV by the AGILE satellite

M. Marisaldi; Fabio Fuschino; Claudio Labanti; M. Galli; F. Longo; Ettore Del Monte; G. Barbiellini; A. Giuliani; E. Moretti; S. Vercellone; Enrico Costa; S. Cutini; I. Donnarumma; M. Feroci; Igor Y. Lapshov; F. Lazzarotto; P. Lipari; S. Mereghetti; Luigi Pacciani; Massimo Rapisarda; Paolo Soffitta; Massimo Trifoglio; A. Argan; F. Boffelli; A. Bulgarelli; P. A. Caraveo; Paolo Walter Cattaneo; Andrew W. Chen; V. Cocco; Filippo D'Ammando

We report the detection by the Astrorivelatore Gamma a Immagini Leggero (AGILE) satellite of terrestrial gamma ray flashes (TGFs) obtained with the minicalorimeter (MCAL) detector operating in the ...


Nature | 2009

Discovery of extreme particle acceleration in the microquasar Cygnus X-3

A. Bulgarelli; G. Piano; S. Sabatini; E. Striani; Alessio Trois; Guy G. Pooley; S. Trushkin; N. A. Nizhelskij; Michael L. McCollough; K. I. I. Koljonen; G. Pucella; A. Giuliani; Andrew W. Chen; E. Costa; V. Vittorini; Massimo Trifoglio; F. Gianotti; A. Argan; G. Barbiellini; P. A. Caraveo; Paolo Walter Cattaneo; V. Cocco; T. Contessi; F. D'Ammando; E. Del Monte; G. De Paris; G. Di Cocco; G. Di Persio; I. Donnarumma; M. Feroci

Super-massive black holes in active galaxies can accelerate particles to relativistic energies, producing jets with associated γ-ray emission. Galactic ‘microquasars’, which are binary systems consisting of a neutron star or stellar-mass black hole accreting gas from a companion star, also produce relativistic jets, generally together with radio flares. Apart from an isolated event detected in Cygnusu2009X-1, there has hitherto been no systematic evidence for the acceleration of particles to gigaelectronvolt or higher energies in a microquasar, with the consequence that we are as yet unsure about the mechanism of jet energization. Here we report four γ-ray flares with energies above 100u2009MeV from the microquasar Cygnusu2009X-3 (an exceptional X-ray binary that sporadically produces radio jets). There is a clear pattern of temporal correlations between the γ-ray flares and transitional spectral states of the radio-frequency and X-ray emission. Particle acceleration occurred a few days before radio-jet ejections for two of the four flares, meaning that the process of jet formation implies the production of very energetic particles. In Cygnusu2009X-3, particle energies during the flares can be thousands of times higher than during quiescent states.


The Astrophysical Journal | 2011

NEUTRAL PION EMISSION FROM ACCELERATED PROTONS IN THE SUPERNOVA REMNANT W44

A. Giuliani; M. Cardillo; Yasuo Fukui; S. Yoshiike; Kazufumi Torii; G. Dubner; G. Castelletti; G. Barbiellini; A. Bulgarelli; Patrizia A. Caraveo; Enrico Costa; Paolo Walter Cattaneo; Andrew W. Chen; T. Contessi; E. Del Monte; I. Donnarumma; M. Feroci; F. Gianotti; F. Lazzarotto; F. Lucarelli; F. Longo; M. Marisaldi; S. Mereghetti; Luigi Pacciani; A. Pellizzoni; G. Piano; P. Picozza; G. Pucella; M. Rapisarda; A. Rappoldi

We present the AGILE gamma-ray observations in the energy range 50 MeV-10 GeV of the supernova remnant (SNR) W44, one of the most interesting systems for studying cosmic-ray production. W44 is an intermediate-age SNR ({approx}20, 000 years) and its ejecta expand in a dense medium as shown by a prominent radio shell, nearby molecular clouds, and bright [S II] emitting regions. We extend our gamma-ray analysis to energies substantially lower than previous measurements which could not conclusively establish the nature of the radiation. We find that gamma-ray emission matches remarkably well both the position and shape of the inner SNR shocked plasma. Furthermore, the gamma-ray spectrum shows a prominent peak near 1 GeV with a clear decrement at energies below a few hundreds of MeV as expected from neutral pion decay. Here we demonstrate that (1) hadron-dominated models are consistent with all W44 multiwavelength constraints derived from radio, optical, X-ray, and gamma-ray observations; (2) ad hoc lepton-dominated models fail to explain simultaneously the well-constrained gamma-ray and radio spectra, and require a circumstellar density much larger than the value derived from observations; and (3) the hadron energy spectrum is well described by a power law (with index s = 3.0 {+-}morexa0» 0.1) and a low-energy cut-off at E{sub c} = 6 {+-} 1 GeV. Direct evidence for pion emission is then established in an SNR for the first time.«xa0less


The Astrophysical Journal | 2010

DIRECT EVIDENCE FOR HADRONIC COSMIC-RAY ACCELERATION IN THE SUPERNOVA REMNANT IC 443

A. Giuliani; Andrew W. Chen; A. Argan; G. Barbiellini; A. Bulgarelli; Patrizia A. Caraveo; Paolo Walter Cattaneo; V. Cocco; T. Contessi; Filippo D'Ammando; Enrico Costa; G. De Paris; E. Del Monte; G. Di Cocco; I. Donnarumma; A. Ferrari; M. Feroci; Fabio Fuschino; M. Galli; F. Gianotti; Claudio Labanti; Igor Y. Lapshov; F. Lazzarotto; P. Lipari; F. Longo; M. Marisaldi; M. Mastropietro; S. Mereghetti; E. Morelli; E. Moretti

The supernova remnant (SNR) IC 443 is an intermediate-age remnant well known for its radio, optical, X-ray, and gamma-ray energy emissions. In this Letter, we study the gamma-ray emission above 100 MeV from IC 443 as obtained by the AGILE satellite. A distinct pattern of diffuse emission in the energy range 100 MeV–3 GeV is detected across the SNR with its prominent maximum (source “A”) localized in the northeastern shell with a flux F = (47 ± 10) × 10 −8 photons cm −2 s −1 above 100 MeV. This location is the site of the strongest shock interaction between the SNR blast wave and the dense circumstellar medium. Source “A” is not coincident with the TeV source located 0.4 ◦ away and associated with a dense molecular cloud complex in the SNR central region. From our observations, and from the lack of detectable diffuse TeV emission from its northeastern rim, we demonstrate that electrons cannot be the main emitters of gamma rays in the range 0.1–10 GeV at the site of the strongest SNR shock. The intensity, spectral characteristics, and location of the most prominent gamma-ray emission together with the absence of cospatial detectable TeV emission are consistent only with a hadronic model of cosmic-ray acceleration in the SNR. A high-density molecular cloud (cloud “E”) provides a remarkable “target” for nucleonic interactions of accelerated hadrons; our results show enhanced gamma-ray production near the molecular cloud/shocked shell interaction site. IC 443 provides the first unambiguous evidence of cosmic-ray acceleration by SNRs.


Astronomy and Astrophysics | 2010

AGILE detection of GeV gamma-ray emission from the SNR W28

A. Giuliani; A. Bulgarelli; E. Striani; S. Sabatini; M. Cardillo; Yasuo Fukui; Akiko Kawamura; Akio Ohama; Naoko Furukawa; K. Torii; Hidetoshi Sano; F. Aharonian; F. Verrecchia; A. Argan; G. Barbiellini; P. A. Caraveo; Paolo Walter Cattaneo; Andrew W. Chen; V. Cocco; Enrico Costa; F. D'Ammando; E. Del Monte; G. De Paris; G. Di Cocco; I. Donnarumma; M. Feroci; M. Fiorini; T. Froysland; Fabio Fuschino; M. Galli

Aims. Supernova remnants (SNRs) are believed to be the main sources of Galactic cosmic rays. Molecular clouds associated with SNRs can produce gamma-ray emission by means of the interaction of accelerated particles with the concentrated gas. The middle-aged SNR W28, because of its associated system of dense molecular clouds, provides an excellent opportunity to test this hypothesis. Methods. We present the AGILE/GRID observations of SNR W28, and compare them with observations at other wavelengths (TeV and 12 CO (J = 1 → 0) molecular line emission). Results. The gamma-ray flux detected by AGILE from the dominant source associated with W28 is (14 ± 5) × 10 −8 ph cm −2 s −1 for E > 400 MeV. This source is positionally well correlated with the TeV emission observed by the HESS telescope. The local variations in the GeV to TeV flux ratio imply that there is a difference between the CR spectra of the north-west and south molecular cloud complexes. A model based on a hadronicinduced interaction and diffusion with two molecular clouds at different distances from the W28 shell can explain both the morphological and spectral features observed by both AGILE in the MeV-GeV energy range and the HESS telescope in the TeV energy range. The combined set of AGILE and H.E.S.S. data strongly support a hadronic model for the gamma-ray production in W28.


The Astrophysical Journal | 2009

DETECTION OF GAMMA-RAY EMISSION FROM THE ETA-CARINAE REGION

S. Sabatini; E. Pian; A. Bulgarelli; Patrizia A. Caraveo; Roberto Viotti; M. F. Corcoran; A. Giuliani; F. Verrecchia; S. Vercellone; S. Mereghetti; A. Argan; G. Barbiellini; F. Boffelli; Paolo Walter Cattaneo; Andrew W. Chen; V. Cocco; Filippo D'Ammando; Enrico Costa; G. De Paris; E. Del Monte; G. Di Cocco; I. Donnarumma; A. Ferrari; M. Feroci; M. Fiorini; T. Froysland; Fabio Fuschino; M. Galli; F. Gianotti; Claudio Labanti

We present the results of extensive observations by the gamma-ray AGILE satellite of the Galactic region hosting the Carina nebula and the remarkable colliding wind binary Eta Carinae (η Car) during the period 2007 July-2009 January. We detect a gamma-ray source (1AGL J1043–5931) consistent with the position of η Car. If 1AGL J1043–5931 is associated with the Car system, our data provide the long sought first detection above 100 MeV of a colliding wind binary. The average gamma-ray flux above 100 MeV and integrated over the preperiastron period 2007 July-2008 October is F γ = (37 ± 5) × 10–8 ph cm–2 s–1 corresponding to an average gamma-ray luminosity of L γ = 3.4 × 1034 erg s–1 for a distance of 2.3 kpc. We also report a two-day gamma-ray flaring episode of 1AGL J1043–5931 on 2008 October 11-13 possibly related to a transient acceleration and radiation episode of the strongly variable shock in the system.


The Astrophysical Journal | 2011

THE BRIGHTEST GAMMA-RAY FLARING BLAZAR IN THE SKY: AGILE AND MULTI-WAVELENGTH OBSERVATIONS OF 3C 454.3 DURING 2010 NOVEMBER

S. Vercellone; E. Striani; V. Vittorini; I. Donnarumma; Luigi Pacciani; G. Pucella; C. M. Raiteri; M. Villata; Patrizia Romano; M. Fiocchi; A. Bazzano; V. Bianchin; C. Ferrigno; L. Maraschi; E. Pian; M. Türler; P. Ubertini; A. Bulgarelli; Andrew W. Chen; A. Giuliani; F. Longo; G. Barbiellini; M. Cardillo; Paolo Walter Cattaneo; E. Del Monte; M. Feroci; A. Ferrari; Fabio Fuschino; F. Gianotti; M. Giusti

Since 2005, the blazar 3C 454.3 has shown remarkable flaring activity at all frequencies, and during the last four years it has exhibited more than one ?-ray flare per year, becoming the most active ?-ray blazar in the sky. We present for the first time the multi-wavelength AGILE, Swift, INTEGRAL, and GASP-WEBT data collected in order to explain the extraordinary ?-ray flare of 3C 454.3 which occurred in 2010 November. On 2010 November 20 (MJD 55520), 3C 454.3 reached a peak flux (E >100?MeV) of Fp ? = (6.8 ? 1.0) ? 10?5?photons cm?2 s?1? on a timescale of about 12 hr, more than a factor of six higher than the flux of the brightest steady ?-ray source, the Vela pulsar, and more than a factor of three brighter than its previous super-flare on 2009 December 2-3. The multi-wavelength data make possible a thorough study of the present event: the comparison with the previous outbursts indicates a close similarity to the one that occurred in 2009. By comparing the broadband emission before, during, and after the ?-ray flare, we find that the radio, optical, and X-ray emission varies within a factor of 2-3, whereas the ?-ray flux by a factor of 10. This remarkable behavior is modeled by an external Compton component driven by a substantial local enhancement of soft seed photons.


The Astrophysical Journal | 2010

Episodic Transient Gamma-ray Emission from the Microquasar Cygnus X-1

S. Sabatini; E. Striani; A. Bulgarelli; V. Vittorini; G. Piano; E. Del Monte; M. Feroci; F. de Pasquale; Massimo Trifoglio; F. Gianotti; A. Argan; G. Barbiellini; Patrizia A. Caraveo; Paolo Walter Cattaneo; Andrew W. Chen; F. D’Ammando; Enrico Costa; G. De Paris; G. Di Cocco; I. Donnarumma; A. Ferrari; M. Fiorini; Fabio Fuschino; M. Galli; A. Giuliani; M. Giusti; Claudio Labanti; F. Lazzarotto; P. Lipari; F. Longo

Cygnus X-1 (Cyg X-1) is the archetypal black hole binary system in our Galaxy. We report the main results of an extensive search for transient gamma-ray emission from Cygnus X-1 carried out in the energy range 100 MeV-3 GeV by the AGILE satellite, during the period 2007 July-2009 October. The total exposure time is about 300 days, during which the source was in the hard X-ray spectral state. We divided the observing intervals in 2-4 week periods, and searched for transient and persistent emission. We report an episode of significant transient gamma-ray emission detected on 2009 October 16 in a position compatible with Cyg X-1 optical position. This episode, which occurred during a hard spectral state of Cyg X-1, shows that a 1-2 day time variable emission above 100 MeV can be produced during hard spectral states, having important theoretical implications for current Comptonization models for Cyg X-1 and other microquasars. Except for this one short timescale episode, no significant gamma-ray emission was detected by AGILE. By integrating all available data, we obtain a 2{sigma} upper limit for the total integrated flux of F {sub {gamma}}{sub ,U.L.} = 3 x 10{sup -8} ph cm{sup -2} s{sup -1} in the energymorexa0» range 100 MeV-3 GeV. We then clearly establish the existence of a spectral cutoff in the energy range 1-100 MeV that applies to the typical hard state outside the flaring period and that confirms the historically known spectral cutoff above 1 MeV.«xa0less


The Astrophysical Journal | 2011

THE CRAB NEBULA SUPER-FLARE IN 2011 APRIL: EXTREMELY FAST PARTICLE ACCELERATION AND GAMMA-RAY EMISSION

E. Striani; G. Piano; I. Donnarumma; G. Pucella; V. Vittorini; A. Bulgarelli; Alessio Trois; F. Verrecchia; Enrico Costa; Martin C. Weisskopf; Allyn F. Tennant; A. Argan; G. Barbiellini; P. A. Caraveo; M. Cardillo; Paolo Walter Cattaneo; Andrew W. Chen; G. De Paris; E. Del Monte; G. Di Cocco; A. Ferrari; M. Feroci; Fabio Fuschino; M. Galli; F. Gianotti; A. Giuliani; Claudio Labanti; Igor Y. Lapshov; F. Lazzarotto; F. Longo

We report on the extremely intense and fast gamma-ray flare above 100 MeV detected by AGILE from the Crab Nebula in mid-April 2011. This event is the fourth of a sequence of reported major gamma-ray flares produced by the Crab Nebula in the period 2007/mid-2011. These events are attributed to strong radiative and plasma instabilities in the inner Crab Nebula, and their properties are crucial for theoretical studies of fast and efficient particle acceleration up to 10{sup 15} eV. Here we study the very rapid flux and spectral evolution of the event that on 2011 April 16 reached the record-high peak flux of F = (26 {+-} 5) x 10{sup -6} photons cm{sup -2} s{sup -1} with a rise-time timescale that we determine to be in the range 6-10 hr. The peak flaring gamma-ray spectrum reaches a distinct maximum near 500 MeV with no substantial emission above 1 GeV. The very rapid rise time and overall evolution of the Crab Nebula flare strongly constrain the acceleration mechanisms and challenge MHD models. We briefly discuss the theoretical implications of our observations.


The Astrophysical Journal | 2009

High-resolution timing observations of Spin-Powered Pulsars with the AGILE Gamma-Ray Telescope

A. Pellizzoni; M. Pilia; Andrea Possenti; Fabio Fornari; P. A. Caraveo; E. Del Monte; S. Mereghetti; A. Argan; Alessio Trois; M. Burgay; Andrew W. Chen; I. Cognard; Enrico Costa; N. D'Amico; P. Esposito; M. Feroci; Fabio Fuschino; A. Giuliani; J. P. Halpern; G. Hobbs; A. Hotan; S. Johnston; M. Kramer; F. Longo; R. N. Manchester; M. Marisaldi; J. Palfreyman; P. Weltevrede; G. Barbiellini; F. Boffelli

Astro-rivelatore Gamma ad Immagini LEggero (AGILE) is a small gamma-ray astronomy satellite mission of the Italian Space Agency dedicated to high-energy astrophysics launched in 2007 April. Its ∼ 1 μs absolute time tagging capability coupled with a good sensitivity in the 30 MeV–30 GeV range, with simultaneous X-ray monitoring in the 18–60 keV band, makes it perfectly suited for the study of gamma-ray pulsars following up on theCompton Gamma RayObservatory/EGRET heritage. In this paper, we present the firstAGILE timing results on the known gamma-ray pulsars Vela, Crab, Geminga, and B1706−44. The data were collected from 2007 July to 2008 April, exploiting the mission Science Verification Phase, the Instrument Timing Calibration, and the early Observing Pointing Program. Thanks to its large field of view, AGILE collected a large number of gamma-ray photons from these pulsars (∼ 10,000 pulsed counts for Vela) in only few months of observations. The coupling of AGILE timing capabilities, simultaneous radio/X-ray monitoring, and new tools aimed at precise photon phasing, also exploiting timing noise correction, unveiled new interesting features at the submillisecond level in the pulsars’ high-energy light curves.

Researchain Logo
Decentralizing Knowledge