Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where F. William Pierson is active.

Publication


Featured researches published by F. William Pierson.


Viruses | 2010

Complete genomic sequence of bacteriophage felix o1.

Jean M. Whichard; Lee A. Weigt; Douglas J. Borris; Ling Ling Li; Qing Zhang; Vivek Kapur; F. William Pierson; Erika J. Lingohr; Yi-Min She; Andrew M. Kropinski; Nammalwar Sriranganathan

Bacteriophage O1 is a Myoviridae A1 group member used historically for identifying Salmonella. Sequencing revealed a single, linear, 86,155-base-pair genome with 39% average G+C content, 131 open reading frames, and 22 tRNAs. Closest protein homologs occur in Erwinia amylovora phage φEa21-4 and Escherichia coli phage wV8. Proteomic analysis indentified structural proteins: Gp23, Gp36 (major tail protein), Gp49, Gp53, Gp54, Gp55, Gp57, Gp58 (major capsid protein), Gp59, Gp63, Gp64, Gp67, Gp68, Gp69, Gp73, Gp74 and Gp77 (tail fiber). Based on phage-host codon differences, 7 tRNAs could affect translation rate during infection. Introns, holin-lysin cassettes, bacterial toxin homologs and host RNA polymerase-modifying genes were absent.


Journal of Veterinary Diagnostic Investigation | 2007

Characteristics of Diagnostic Tests Used in the 2002 Low-Pathogenicity Avian Influenza H7N2 Outbreak in Virginia

François Elvinger; Bruce L. Akey; Dennis A. Senne; F. William Pierson; Barbara A. Porter-Spalding; Erica Spackman; David L. Suarez

An outbreak of low-pathogenicity avian influenza (LPAI) H7N2 occurred in 2002 in the Shenandoah Valley, a high-density poultry production region in Virginia. Infected flocks were identified through a combination of observation of clinical signs and laboratory diagnostic tests designed to detect avian influenza (AI) antibodies, virus, or H7-specific RNA. In this report, fitness for purpose of 3 virus/RNA detection assays used during the outbreak was examined: 1) antigen capture enzyme immunoassay (AC-EIA), 2) real-time reverse transcription polymerase chain reaction (RRT-PCR), and 3) virus isolation (VI). Results from testing 762 turkey and 2,216 chicken tracheal swab pooled specimens were analyzed to determine diagnostic sensitivities and specificities of these tests under field conditions using Bayesian techniques for validation of diagnostic tests in the absence of a “gold standard.” Diagnostic sensitivities (with 95% probability intervals) in turkeys of AC-EIA and RRT-PCR, in reference to VI, were 65.9 (50.6; 81.3)% and 85.1 (71.9; 95.7)% and of VI 92.9 (78.0; 98.8)% in reference to AC-EIA or 88.7 (76.0; 97.2)% in reference to RRT-PCR; in chickens, diagnostic sensitivities were 75.1 (45.6; 94.2)%, 86.3 (65.9; 97.1)%, and 86.2 (65.8; 97.1)% or 86.3 (66.4; 97.2)%, respectively. Specificities were 99.1 (97.9; 99.8)%, 98.9 (98.0; 99.5)%, and 98.6 (97.4; 99.4)% or 98.8 (97.8; 99.5)% in turkeys and between 99.25% and 99.27% with probability intervals of approximately ±0.4% for all tests in chickens. Simultaneous use of AC-EIA and RRT-PCR contributed significantly to the rapid control of the outbreak, but the AI RRT-PCR assay with >85% sensitivity and ∼99% specificity, combined with relatively low cost and fast turnaround, could be used as the sole diagnostic test in outbreaks of LPAI.


Veterinary Microbiology | 2011

Construction of an infectious cDNA clone of avian hepatitis E virus (avian HEV) recovered from a clinically healthy chicken in the United States and characterization of its pathogenicity in specific-pathogen-free chickens

Hyuk Moo Kwon; Tanya LeRoith; Raghavendra Sumanth Pudupakam; F. William Pierson; Yao-Wei Huang; Barbara A. Dryman; Xiang-Jin Meng

A genetically distinct strain of avian hepatitis E virus (avian HEV-VA strain) was isolated from a healthy chicken in Virginia, and thus it is important to characterize and compare its pathogenicity with the prototype strain (avian HEV-prototype) isolated from a diseased chicken. Here we first constructed an infectious clone of the avian HEV-VA strain. Capped RNA transcripts from the avian HEV-VA clone were replication-competent after transfection of LMH chicken liver cells. Chickens inoculated intrahepatically with RNA transcripts of avian HEV-VA clone developed active infection as evidenced by fecal virus shedding, viremia, and seroconversion. To characterize the pathogenicity, RNA transcripts of both avian HEV-VA and avian HEV-prototype clones were intrahepatically inoculated into the livers of chickens. Avian HEV RNA was detected in feces, serum and bile samples from 10/10 avian HEV-VA-inoculated and 9/9 avian HEV-prototype-inoculated chickens although seroconversion occurred only in some chickens during the experimental period. The histopathological lesion scores were lower for avian HEV-VA group than avian HEV-prototype group in the liver at 3 and 5 weeks post-inoculation (wpi) and in the spleen at 3 wpi, although the differences were not statistically significant. The liver/body weight ratio, indicative of liver enlargement, of both avian HEV-VA and avian HEV-prototype groups were significantly higher than that of the control group at 5 wpi. Overall, the avian HEV-VA strain still induces histological liver lesions even though it was isolated from a healthy chicken. The results also showed that intrahepatic inoculation of chickens with RNA transcripts of avian HEV infectious clone may serve as an alternative for live virus in animal pathogenicity studies.


Biochemical Genetics | 2005

Molecular Analysis of the Relatedness of Five Domesticated Turkey Strains

Edward J. Smith; Tuoyu Geng; Elizabeth Long; F. William Pierson; D. Phillip Sponenberg; Cal Larson; Robert M. Gogal

Our knowledge of the genetic relatedness among the eight existing domesticated turkey strains is limited. To begin to address this paucity, genetic relatedness among five turkey strains (Blue Slate, Bourbon Red, Narragansett, Royal Palm, and Spanish Black) was investigated using three molecular marker systems: randomly amplified polymorphic DNA (RAPD), microsatellite, and SNPs derived from a sequence tagged site and a cloned RAPD fragment. The RAPD analyses were based on five primers that revealed a total of 14 informative DNA fragments in all five populations. The microsatellite analyses involved two informative alleles from three primer-pairs. A total of nine SNPs were detected, one of which appeared to be strain specific. This SNP formed the basis of a PCR-RFLP genotyping procedure developed to distinguish one of the strains from the other four. Evidence from these analyses including the SNP-based RFLP-PCR suggests that Royal Palm is distinct from the other four strains, though more closely related to Narragansett. These data provide, for the first time, molecular evidence of the potential relationships among noncommercial domesticated turkey strains.


Avian Diseases | 2016

Review of Nonfoodborne Zoonotic and Potentially Zoonotic Poultry Diseases.

Agnes Agunos; F. William Pierson; Bwalya Lungu; Patricia A. Dunn; Nathaniel L. Tablante

SUMMARY Emerging and re-emerging diseases are continuously diagnosed in poultry species. A few of these diseases are known to cross the species barrier, thus posing a public health risk and an economic burden. We identified and synthesized global evidence for poultry nonfoodborne zoonoses to better understand these diseases in people who were exposed to different poultry-related characteristics (e.g., occupational or nonoccupational, operational types, poultry species, outbreak conditions, health status of flocks). This review builds on current knowledge on poultry zoonoses/potentially zoonotic agents transmitted via the nonfoodborne route. It also identifies research gaps and potential intervention points within the poultry industry to reduce zoonotic transmission by using various knowledge synthesis tools such as systematic review (SR) and qualitative (descriptive) and quantitative synthesis methods (i.e., meta-analysis). Overall, 1663 abstracts were screened and 156 relevant articles were selected for further review. Full articles (in English) were retrieved and critically appraised using routine SR methods. In total, eight known zoonotic diseases were reviewed: avian influenza (AI) virus (n = 85 articles), Newcastle disease virus (n = 8), West Nile virus (WNV, n = 2), avian Chlamydia (n = 24), Erysipelothrix rhusiopathiae (n = 3), methicillin-resistant Staphylococcus aureus (MRSA, n = 15), Ornithonyssus sylvarium (n = 4), and Microsporum gallinae (n = 3). In addition, articles on other viral poultry pathogens (n = 5) and poultry respiratory allergens derived from mites and fungi (n = 7) were reviewed. The level of investigations (e.g., exposure history, risk factor, clinical disease in epidemiologically linked poultry, molecular studies) to establish zoonotic linkages varied across disease agents and across studies. Based on the multiple outcome measures captured in this review, AI virus seems to be the poultry zoonotic pathogen that may have considerable and significant public health consequences; however, epidemiologic reports have only documented severe human cases clustered in Asia and not in North America. In contrast, avian Chlamydia and MRSA reports clustered mainly in Europe and less so in North America and other regions. Knowledge gaps in other zoonoses or other agents were identified, including potential direct (i.e., nonmosquito-borne) transmission of WNV from flocks to poultry workers, the public health and clinical significance of poultry-derived (livestock-associated) MRSA, the zoonotic significance of other viruses, and the role of poultry allergens in the pathophysiology of respiratory diseases of poultry workers. Across all pathogens reviewed, the use of personal protective equipment was commonly cited as the most important preventive measure to reduce the zoonotic spread of these diseases and the use of biosecurity measures to reduce horizontal transmission in flock populations. The studies also emphasized the need for flock monitoring and an integrated approach to prevention (i.e., veterinary-public health coordination with regard to diagnosis, and knowledge translation and education in the general population) to reduce zoonotic transmission.


Journal of Food Protection | 2015

Preharvest Salmonella Detection for Evaluation of Fresh Ground Poultry Product Contamination.

Nicholas P. Evans; Robert D. Evans; Jason Regalado; Joseph F. Sullivan; Vikrant Dutta; François Elvinger; F. William Pierson

Salmonella is an important economic and public health concern for the poultry industry. Fresh ground product has been linked with multiple salmonellosis outbreaks in humans. Exposure can be controlled by proper handling and preparation by consumers; however, the industry desires to minimize carriage levels in the final product. A substantial obstacle in reducing product contamination stems from limitations in diagnostic methodologies. Detection of Salmonella contamination currently requires extended incubation periods, and by the time test results are available, the fresh product has reached retail shelves. The goal of this study was to develop a preharvest diagnostic protocol for the evaluation of ground product contamination. The turkey processing plant where this research was conducted had previously established Salmonella screening (BAX system) of ground product, thus providing an opportunity for preharvest sample comparison. Drag swabs were collected from live-haul trailers entering the processing plant over a 12-month period. The swabs were added to modified buffered peptone water and incubated at 40°C. After incubation for 6 h or overnight, samples were tested for the presence of Salmonella with the DNAble assay and related to ground turkey samples from corresponding lots. The linear relationship for the percentage of Salmonella-positive live-haul trailers was significant for both the 6-h (slope = 1.02, R(2) = 0.96, and P < 0.0001) and overnight (slope = 0.35, R(2) = 0.93, and P = 0.0015) incubations, with the percentage of Salmonella-positive ground turkey samples. These data indicate that preharvest screening provides a meaningful evaluation of product contamination. Additionally, the 6-h incubation protocol is rapid enough to allow for product mitigation and could potentially aid in the reduction of future salmonellosis outbreaks.


Avian Diseases | 2006

Identification of New Morphological and Life-Cycle Stages of Cochlosoma anatis and Experimental Transmission Using Pseudocyst

Nicholas P. Evans; Robert D. Evans; Steve H. Fitz-Coy; F. William Pierson; John L. Robertson; David S. Lindsay

Abstract Cochlosoma anatis is a flagellated intestinal parasite that infects a variety of avian species. C. anatis infections have been associated with decreased weight gain and increased morbidity and mortality. Conditions favoring the growth of this organism in birds are current pathogenic intestinal infections and/or young age. There is little data describing the life cycle of this parasite. In this study, electron microscopy images are presented that document longitudinal binary fission of the trophozoite stage and outline the events of pseudocyst formation, which includes a rounding stage. Evidence provided here indicates that the pseudocyst stage may be a mechanism for transmission of this organism. The observations reported here provide additional evidence of homology between Cochlosoma and members of the trichomonad order.


Veterinary Microbiology | 2018

Biofilm formation and avian immune response following experimental acute and chronic avian cholera due to Pasteurella multocida

Briana Petruzzi; Rami A. Dalloul; Tanya LeRoith; Nicholas P. Evans; F. William Pierson; Thomas J. Inzana

Pasteurella multocida is the causative agent of avian cholera, an important economic and ecological disease that can present as a peracute, acute, chronic, or asymptomatic infection. Acute avian cholera is associated with encapsulated P. multocida, while chronic and asymptomatic cases of avian cholera may be associated with capsule-deficient P. multocida isolates. We hypothesize that biofilm formation is also associated with chronic and asymptomatic avian cholera. Experimental infections of chickens with encapsulated, biofilm-deficient P. multocida strain X73, proficient biofilm forming P. multocida strain X73ΔhyaD, and proficient biofilm forming clinical strains 775 and 756 showed that virulence was inversely correlated with biofilm formation. Biofilm-proficient isolates induced chronic avian cholera in the chicken host. Histopathological analysis was used to show that biofilm-proficient isolates induced little inflammation in the lungs, heart, and liver, while biofilm-deficient isolates induced greater inflammation and induced the recruitment of heterophil granulocytes. Putative biofilm matrix material and exopolysaccharide was detected in pulmonary tissue of chickens diagnosed with chronic avian cholera using scanning electron microscopy and a fluorescently-tagged lectin, respectively, supporting a role for biofilm in chronic avian cholera. P. multocida induced Th1 and Th17 immune responses during acute and chronic avian cholera, as determined by quantitative real-time PCR of splenic cytokine genes. Chickens that succumbed to acute avian cholera after experimental challenge with strain X73 had high levels of INF-γ, IL-1β, IL-6, IL-12A, IL-22, IL-17A, and IL-17RA expressed in the spleen compared to all other experimental groups. Birds infected with capsule-deficient strains had chronic infections lasting 7 days or longer, and had increased levels of IL-17RA, CCR6, and IL-16 compared to non-infected control chickens. However, specific antibody titers increased only transiently to capsule-deficient strains and were low, indicating that antibodies are less important in managing and clearing P. multocida infections.


Journal of General Virology | 2014

RNA transcripts of full-length cDNA clones of rabbit hepatitis E virus are infectious in rabbits.

Caitlin M. Cossaboom; Yao-Wei Huang; Danielle M. Yugo; Scott P. Kenney; Pablo Piñeyro; Shannon R. Matzinger; C. Lynn Heffron; F. William Pierson; Xiang-Jin Meng

Hepatitis E virus (HEV), the causative agent of hepatitis E, is a single-stranded positive-sense RNA virus belonging to the family Hepeviridae. At least four genotypes of the family infect humans: genotypes 1 and 2 are transmitted to humans through contaminated water, while genotypes 3 and 4 are zoonotic and have animal reservoirs. A novel strain of HEV recently identified in rabbits is a distant member of genotype 3, and thus poses a potential risk of zoonotic transmission to humans. The objective of this study was to construct and characterize an infectious cDNA clone of the rabbit HEV. Two full-length cDNA clones of rabbit HEV, pT7g-rabHEV and pT7-rabHEV, were constructed and their infectivity was tested by in vitro transfection of Huh7 human liver cells and by direct intrahepatic inoculation of rabbits with capped RNA transcripts. Results showed that positive signal for rabbit HEV protein was detected by an immunofluorescence assay with a HEV-specific antibody in Huh7 human liver cells transfected with capped RNA transcripts from the two full-length cDNA clones. Rabbits intrahepatically inoculated with capped RNA transcripts from each of the two clones developed active HEV infection as evidenced by seroconversion to anti-HEV antibodies, and detection of rabbit HEV RNA in sera and feces of inoculated animals. The availability of a rabbit HEV infectious cDNA clone now affords us the ability to delineate the mechanism of HEV replication and cross-species infection in a small animal model.


Javma-journal of The American Veterinary Medical Association | 2005

Evaluation of risk factors for the spread of low pathogenicity H7N2 avian influenza virus among commercial poultry farms

Jennifer H. McQuiston; Lindsey P. Garber; Barbara A. Porter-Spalding; John W. Hahn; F. William Pierson; Sherrilyn H. Wainwright; Dennis A. Senne; Thomas J. Brignole; Bruce L. Akey; Tom Holt

Collaboration


Dive into the F. William Pierson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dennis A. Senne

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yao-Wei Huang

Virginia–Maryland Regional College of Veterinary Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge