Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fabian H. Leendertz is active.

Publication


Featured researches published by Fabian H. Leendertz.


Current Biology | 2008

Pandemic human viruses cause decline of endangered great apes.

Sophie Köndgen; Hjalmar S. Kühl; Paul K. N'Goran; Peter D. Walsh; Svenja Schenk; Nancy Ernst; Roman Biek; Pierre Formenty; Kerstin Mätz-Rensing; Brunhilde Schweiger; Sandra Junglen; Heinz Ellerbrok; Andreas Nitsche; Thomas Briese; W. Ian Lipkin; Georg Pauli; Christophe Boesch; Fabian H. Leendertz

Commercial hunting and habitat loss are major drivers of the rapid decline of great apes [1]. Ecotourism and research have been widely promoted as a means of providing alternative value for apes and their habitats [2]. However, close contact between humans and habituated apes during ape tourism and research has raised concerns that disease transmission risks might outweigh benefits [3-7]. To date only bacterial and parasitic infections of typically low virulence have been shown to move from humans to wild apes [8, 9]. Here, we present the first direct evidence of virus transmission from humans to wild apes. Tissue samples from habituated chimpanzees that died during three respiratory-disease outbreaks at our research site, Côte dIvoire, contained two common human paramyxoviruses. Viral strains sampled from chimpanzees were closely related to strains circulating in contemporaneous, worldwide human epidemics. Twenty-four years of mortality data from observed chimpanzees reveal that such respiratory outbreaks could have a long history. In contrast, survey data show that research presence has had a strong positive effect in suppressing poaching around the research site. These observations illustrate the challenge of maximizing the benefit of research and tourism to great apes while minimizing the negative side effects.


Proceedings of the National Academy of Sciences of the United States of America | 2009

The origin of malignant malaria

Stephen M. Rich; Fabian H. Leendertz; Guang Xu; Matthew LeBreton; Cyrille F. Djoko; Makoah N. Aminake; Eric E. Takang; Joseph Le Doux Diffo; Brian L. Pike; Benjamin M. Rosenthal; Pierre Formenty; Christophe Boesch; Francisco J. Ayala; Nathan D. Wolfe

Plasmodium falciparum, the causative agent of malignant malaria, is among the most severe human infectious diseases. The closest known relative of P. falciparum is a chimpanzee parasite, Plasmodium reichenowi, of which one single isolate was previously known. The co-speciation hypothesis suggests that both parasites evolved separately from a common ancestor over the last 5–7 million years, in parallel with the divergence of their hosts, the hominin and chimpanzee lineages. Genetic analysis of eight new isolates of P. reichenowi, from wild and wild-born captive chimpanzees in Cameroon and Côte dIvoire, shows that P. reichenowi is a geographically widespread and genetically diverse chimpanzee parasite. The genetic lineage comprising the totality of global P. falciparum is fully included within the much broader genetic diversity of P. reichenowi. This finding is inconsistent with the co-speciation hypothesis. Phylogenetic analysis indicates that all extant P. falciparum populations originated from P. reichenowi, likely by a single host transfer, which may have occurred as early as 2–3 million years ago, or as recently as 10,000 years ago. The evolutionary history of this relationship may be explained by two critical genetic mutations. First, inactivation of the CMAH gene in the human lineage rendered human ancestors unable to generate the sialic acid Neu5Gc from its precursor Neu5Ac, and likely made humans resistant to P. reichenowi. More recently, mutations in the dominant invasion receptor EBA 175 in the P. falciparum lineage provided the parasite with preference for the overabundant Neu5Ac precursor, accounting for its extreme human pathogenicity.


Nature | 2004

Anthrax kills wild chimpanzees in a tropical rainforest

Fabian H. Leendertz; Heinz Ellerbrok; Christophe Boesch; Emmanuel Couacy-Hymann; Kerstin Mätz-Rensing; Regine Hakenbeck; Carina Bergmann; Pola Abaza; Sandra Junglen; Yasmin Moebius; Linda Vigilant; Pierre Formenty; Georg Pauli

Infectious disease has joined habitat loss and hunting as threats to the survival of the remaining wild populations of great apes. Nevertheless, relatively little is known about the causative agents. We investigated an unusually high number of sudden deaths observed over nine months in three communities of wild chimpanzees (Pan troglodytes verus) in the Taï National Park, Ivory Coast. Here we report combined pathological, cytological and molecular investigations that identified Bacillus anthracis as the cause of death for at least six individuals. We show that anthrax can be found in wild non-human primates living in a tropical rainforest, a habitat not previously known to harbour B. anthracis. Anthrax is an acute disease that infects ruminants, but other mammals, including humans, can be infected through contacting or inhaling high doses of spores or by consuming meat from infected animals. Respiratory and gastrointestinal anthrax are characterized by rapid onset, fever, septicaemia and a high fatality rate without early antibiotic treatment. Our results suggest that epidemic diseases represent substantial threats to wild ape populations, and through bushmeat consumption also pose a hazard to human health.


Emerging Infectious Diseases | 2012

Hantavirus in bat, Sierra Leone

Sabrina Weiss; Peter T. Witkowski; Brita Auste; Kathrin Nowak; Natalie Weber; Jakob Fahr; Jean-Vivien Mombouli; Nathan D. Wolfe; Jan Felix Drexler; Christian Drosten; Boris Klempa; Fabian H. Leendertz; Detlev H. Krüger

To the Editor: Hantaviruses (family Bunyaviridae) are transmitted from rodent reservoirs to humans. These viruses cause life-threatening human diseases: hantavirus cardiopulmonary syndrome in the Americas and hemorrhagic fever with renal syndrome in Asia and Europe (1). Since 2006, indigenous hantaviruses were reported also from Africa. Sangassou virus was found in an African wood mouse (Hylomyscus simus) in Guinea (2). Discovery of newer African hantaviruses, Tanganya virus and recently Azagny virus, was even more surprising because they were found in shrews (3,4). n nThe detection of hantaviruses in small mammals other than rodents, such as shrews and also moles (4), increasingly raises questions regarding the real hantavirus host range. Bats (order Chiroptera) are already known to harbor a broad variety of emerging pathogens, including other bunyaviruses (5). Their ability to fly and social life history enable efficient pathogen maintenance, evolution, and spread. Therefore, we conducted a study on hantaviruses in bats from Africa. n nA total of 525 tissue samples from 417 bats representing 28 genera were tested for the presence of hantavirus RNA. Samples originated from different regions in western and central Africa and were collected during 2009 and early 2011. Total RNA was extracted from tissue samples and reverse transcribed. cDNA was screened by PCR specific for sequences of the large genomic segment across the genus Hantavirus (2). n nOne sample yielded a product of the expected size and was subjected to cloning and sequencing. The positive sample (MGB/1209) was obtained from 1 of 18 investigated slit-faced bats (family Nycteridae). The animal was trapped at the Magboi River within Gola National Park, Sierra Leone (7°50.194′N, 10°38.626′W), and the identification as Nycteris hispida has been verified with the voucher specimen (RCJF529). Histologic examination of organs of the animal showed no obvious pathologic findings. n nThe obtained 414-nt sequence covers a genomic region, which was found to correspond to nt position 2,918–3,332 in the large segment open reading frame of prototypic Hantaan virus. Bioinformatic analysis on the amino acid level showed highest degrees of identity to shrew- and mole-associated hantaviruses (Thottapalayam virus 73.0%, Altai virus 69.7%, Nova and Imjin virus 69.3%). On the basis of tree topology of a maximum-likelihood phylogenetic tree, the sequence does not cluster with rodent-associated hantaviruses but groups with those found in shrews and moles (Figure). n n n nFigure n nMaximum-likelihood phylogenetic tree of MGB/1209 virus based on partial large segment sequence (414 nt) and showing the phylogenetic placement of the novel sequence from Nycteris spp. bat compared with hantaviruses associated (i) with shrews and moles: ... n n n nConsidering that bats are more closely related to shrews and moles than to rodents (6), a certain genetic similarity of a putative bat-borne hantavirus with shrew- and mole-associated hantaviruses seems reasonable. Notably, shrew-associated Thottapalayam virus (India) and Imjin virus (South Korea) seem to be closer relatives, and African Tanganya virus (Guinea) and Azagny virus (Cote d’Ivoire) are more distantly related. Additional sequence data is needed for more conclusive phylogenetic analyses. n nBecause the new amino acid sequence is at least 22% divergent from those of other hantaviruses, we conclude that the bat was infected with a newly found hantavirus. We propose the putative name Magboi virus (MGBV) for the new virus because it was detected in an animal captured at the Magboi River in Sierra Leone. The MGBV nucleotide sequence is novel and has not been known or handled before in our laboratory. Before this study, hantavirus nucleic acid was found in lung and kidney tissues of bats from the genera Eptesicus and Rhinolophus in South Korea. However, nucleotide sequencing showed the presence of prototypical Hantaan virus indicating a spillover infection or laboratory contamination (7). n nFurther screening is necessary to confirm N. hispida as a natural reservoir host of the virus. Although the presented bat-associated sequence is obviously distinct from other hantaviruses, which suggests association with a novel natural host, a spillover infection from another, yet unrecognized host cannot be ruled out. However, detection of the virus exclusively in 1 organ (lung but not in liver, kidney, and spleen; data not shown) suggests a persistent infection that is typically observed in natural hosts of hantaviruses (8). n nTo date, only a few reports exist on cases of hemorrhagic fever with renal syndrome in Africa (9,10). However, underreporting must be assumed because the symptoms resemble those of many other febrile infections. Moreover, in cases of infections by non–rodent-associated hantaviruses, cross-reactivity with routinely used rodent-borne virus antigens should be limited and may hamper human serodiagnostics (1). The results suggest that bats, which are hosts of many emerging pathogens (5), may act as natural reservoirs for hantavirus. The effect of this virus on public health remains to be determined.


Journal of Bacteriology | 2006

Characterization of Bacillus anthracis-Like Bacteria Isolated from Wild Great Apes from Côte d'Ivoire and Cameroon

Silke R. Klee; Muhsin Özel; Bernd Appel; Christophe Boesch; Heinz Ellerbrok; Daniela Jacob; Gudrun Holland; Fabian H. Leendertz; Georg Pauli; Roland Grunow; Herbert Nattermann

We present the microbiological and molecular characterization of bacteria isolated from four chimpanzees and one gorilla thought to have died of an anthrax-like disease in Côte dIvoire and Cameroon. These isolates differed significantly from classic Bacillus anthracis by the following criteria: motility, resistance to the gamma phage, and, for isolates from Cameroon, resistance to penicillin G. A capsule was expressed not only after induction by CO(2) and bicarbonate but also under normal growth conditions. Subcultivation resulted in beta-hemolytic activity and gamma phage susceptibility in some subclones, suggesting differences in gene regulation compared to classic B. anthracis. The isolates from Côte dIvoire and Cameroon showed slight differences in their biochemical characteristics and MICs of different antibiotics but were identical in all molecular features and sequences analyzed. PCR and Southern blot analyses confirmed the presence of both the toxin and the capsule plasmid, with sizes corresponding to the B. anthracis virulence plasmids pXO1 and pXO2. Protective antigen was expressed and secreted into the culture supernatant. The isolates possessed variants of the Ba813 marker and the SG-749 fragment differing from that of classic B. anthracis strains. Multilocus sequence typing revealed a close relationship of our atypical isolates with both classic B. anthracis strains and two uncommonly virulent Bacillus cereus and Bacillus thuringiensis isolates. We propose that the newly discovered atypical B. anthracis strains share a common ancestor with classic B. anthracis or that they emerged recently by transfer of the B. anthracis plasmids to a strain of the B. cereus group.


PLOS ONE | 2010

The Genome of a Bacillus Isolate Causing Anthrax in Chimpanzees Combines Chromosomal Properties of B. cereus with B. anthracis Virulence Plasmids

Silke R. Klee; Elzbieta Brzuszkiewicz; Herbert Nattermann; Holger Brüggemann; Susann Dupke; Antje Wollherr; Tatjana Franz; Georg Pauli; Bernd Appel; Wolfgang Liebl; Emmanuel Couacy-Hymann; Christophe Boesch; Frauke-Dorothee Meyer; Fabian H. Leendertz; Heinz Ellerbrok; Gerhard Gottschalk; Roland Grunow; Heiko Liesegang

Anthrax is a fatal disease caused by strains of Bacillus anthracis. Members of this monophyletic species are non motile and are all characterized by the presence of four prophages and a nonsense mutation in the plcR regulator gene. Here we report the complete genome sequence of a Bacillus strain isolated from a chimpanzee that had died with clinical symptoms of anthrax. Unlike classic B. anthracis, this strain was motile and lacked the four prohages and the nonsense mutation. Four replicons were identified, a chromosome and three plasmids. Comparative genome analysis revealed that the chromosome resembles those of non-B. anthracis members of the Bacillus cereus group, whereas two plasmids were identical to the anthrax virulence plasmids pXO1 and pXO2. The function of the newly discovered third plasmid with a length of 14 kbp is unknown. A detailed comparison of genomic loci encoding key features confirmed a higher similarity to B. thuringiensis serovar konkukian strain 97-27 and B. cereus E33L than to B. anthracis strains. For the first time we describe the sequence of an anthrax causing bacterium possessing both anthrax plasmids that apparently does not belong to the monophyletic group of all so far known B. anthracis strains and that differs in important diagnostic features. The data suggest that this bacterium has evolved from a B. cereus strain independently from the classic B. anthracis strains and established a B. anthracis lifestyle. Therefore we suggest to designate this isolate as “B. cereus variety (var.) anthracis”.


Emerging Infectious Diseases | 2008

Global Distribution of Novel Rhinovirus Genotype

Thomas Briese; Neil Renwick; Marietjie Venter; Richard G. Jarman; Dhrubaa Ghosh; Sophie Köndgen; Sanjaya K. Shrestha; A. Mette Hoegh; Inmaculada Casas; Edgard V. Adjogoua; Chantal Akoua-Koffi; Khin Saw Aye Myint; David T. Williams; Glenys Chidlow; Ria van den Berg; Cristina Calvo; Orienka Koch; Gustavo Palacios; Vishal Kapoor; Joseph Villari; Samuel R. Dominguez; Kathryn V. Holmes; Gerry Harnett; David Smith; John S. Mackenzie; Heinz Ellerbrok; Brunhilde Schweiger; Kristian Schønning; Mandeep S. Chadha; Fabian H. Leendertz

Global surveillance for a novel rhinovirus genotype indicated its association with community outbreaks and pediatric respiratory disease in Africa, Asia, Australia, Europe, and North America. Molecular dating indicates that these viruses have been circulating for at least 250 years.


American Journal of Physical Anthropology | 2008

Integrative approaches to the study of primate infectious disease: implications for biodiversity conservation and global health.

Thomas R. Gillespie; Charles L. Nunn; Fabian H. Leendertz

The close phylogenetic relationship between humans and nonhuman primates, coupled with the exponential expansion of human populations and human activities within primate habitats, has resulted in exceptionally high potential for pathogen exchange. Emerging infectious diseases are a consequence of this process that has the capacity to threaten global health and drive primate population declines. Integration of standardized empirical data collection, state-of-the-art diagnostics, and the comparative approach offers the opportunity to create a baseline for patterns of infection in wild primate populations; to better understand the role of disease in primate ecology, behavior, and evolution; and to examine how anthropogenic effects alter the zoonotic potential of various pathogenic organisms. We review these technologies and approaches, including noninvasive sampling in field conditions, and we identify ways in which integrative research activities are likely to fuel future discoveries in primate disease ecology. In addition to considering applied aspects of disease research in primate health and conservation, we review how these approaches are shedding light on parasite biodiversity and the drivers of disease risk across primate species.


Journal of Virology | 2010

Molecular epidemiology of simian immunodeficiency virus infection in wild-living gorillas.

Cecile Neel; Lucie Etienne; Yingying Li; Jun Takehisa; Rebecca S. Rudicell; Innocent Ndong Bass; Joseph Moudindo; Aimé Mebenga; Amandine Esteban; Fran Van Heuverswyn; Florian Liegeois; Philip J. Kranzusch; Peter D. Walsh; Crickette M. Sanz; David Morgan; Jean-Bosco N. Ndjango; Jean-Christophe Plantier; Sabrina Locatelli; Mary Katherine Gonder; Fabian H. Leendertz; Christophe Boesch; Angelique Todd; Eric Delaporte; Eitel Mpoudi-Ngole; Beatrice H. Hahn; Martine Peeters

ABSTRACT Chimpanzees and gorillas are the only nonhuman primates known to harbor viruses closely related to HIV-1. Phylogenetic analyses showed that gorillas acquired the simian immunodeficiency virus SIVgor from chimpanzees, and viruses from the SIVcpz/SIVgor lineage have been transmitted to humans on at least four occasions, leading to HIV-1 groups M, N, O, and P. To determine the geographic distribution, prevalence, and species association of SIVgor, we conducted a comprehensive molecular epidemiological survey of wild gorillas in Central Africa. Gorilla fecal samples were collected in the range of western lowland gorillas (n = 2,367) and eastern Grauer gorillas (n = 183) and tested for SIVgor antibodies and nucleic acids. SIVgor antibody-positive samples were identified at 2 sites in Cameroon, with no evidence of infection at 19 other sites, including 3 in the range of the Eastern gorillas. In Cameroon, based on DNA and microsatellite analyses of a subset of samples, we estimated the prevalence of SIVgor to be 1.6% (range, 0% to 4.6%), which is significantly lower than the prevalence of SIVcpzPtt in chimpanzees (5.9%; range, 0% to 32%). All newly identified SIVgor strains formed a monophyletic lineage within the SIVcpz radiation, closely related to HIV-1 groups O and P, and clustered according to their field site of origin. At one site, there was evidence for intergroup transmission and a high intragroup prevalence. These isolated hot spots of SIVgor-infected gorilla communities could serve as a source for human infection. The overall low prevalence and sporadic distribution of SIVgor could suggest a decline of SIVgor in wild populations, but it cannot be excluded that SIVgor is still more prevalent in other parts of the geographical range of gorillas.


Journal of Virology | 2009

A New Flavivirus and a New Vector: Characterization of a Novel Flavivirus Isolated from Uranotaenia Mosquitoes from a Tropical Rain Forest

Sandra Junglen; Anne Kopp; Andreas Kurth; Georg Pauli; Heinz Ellerbrok; Fabian H. Leendertz

ABSTRACT A novel flavivirus was isolated from Uranotaenia mashonaensis, a mosquito genus not previously known to harbor flaviviruses. Mosquitoes were caught in the primary rain forest of the Taï National Park, Côte dIvoire. The novel virus, termed nounané virus (NOUV), seemed to grow only on C6/36 insect cells and not on vertebrate cells. Typical enveloped flavivirus-like particles of 60 to 65 nm in diameter were detected by electron microscopy in the cell culture supernatant of infected cells. The full genome was sequenced, and potential cleavage and glycosylation sites and cysteine residues were identified, suggesting that the processing of the NOUV polyprotein is similar to that of other flaviviruses. Phylogenetic analyses of the whole polyprotein and the NS3 protein showed that the virus forms a distinct cluster within the clade of mosquito-borne flaviviruses. Only a distant relationship to other known flaviviruses was found, indicating that NOUV is a novel lineage within the Flaviviridae.

Collaboration


Dive into the Fabian H. Leendertz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge