Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sandra Junglen is active.

Publication


Featured researches published by Sandra Junglen.


Lancet Infectious Diseases | 2013

Clinical features and virological analysis of a case of Middle East respiratory syndrome coronavirus infection

Christian Drosten; Michael Seilmaier; Victor Max Corman; Wulf Hartmann; Gregor Scheible; Stefan Sack; Wolfgang Guggemos; René Kallies; Doreen Muth; Sandra Junglen; Marcel A. Müller; Walter Haas; Hana Guberina; Tim Röhnisch; Monika Schmid-Wendtner; Souhaib Aldabbagh; Ulf Dittmer; Hermann Gold; Petra Graf; Frank Bonin; Andrew Rambaut; Clemens-Martin Wendtner

Summary Background The Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging virus involved in cases and case clusters of severe acute respiratory infection in the Arabian Peninsula, Tunisia, Morocco, France, Italy, Germany, and the UK. We provide a full description of a fatal case of MERS-CoV infection and associated phylogenetic analyses. Methods We report data for a patient who was admitted to the Klinikum Schwabing (Munich, Germany) for severe acute respiratory infection. We did diagnostic RT-PCR and indirect immunofluorescence. From time of diagnosis, respiratory, faecal, and urine samples were obtained for virus quantification. We constructed a maximum likelihood tree of the five available complete MERS-CoV genomes. Findings A 73-year-old man from Abu Dhabi, United Arab Emirates, was transferred to Klinikum Schwabing on March 19, 2013, on day 11 of illness. He had been diagnosed with multiple myeloma in 2008, and had received several lines of treatment. The patient died on day 18, due to septic shock. MERS-CoV was detected in two samples of bronchoalveolar fluid. Viral loads were highest in samples from the lower respiratory tract (up to 1·2 × 106 copies per mL). Maximum virus concentration in urine samples was 2691 RNA copies per mL on day 13; the virus was not present in the urine after renal failure on day 14. Stool samples obtained on days 12 and 16 contained the virus, with up to 1031 RNA copies per g (close to the lowest detection limit of the assay). One of two oronasal swabs obtained on day 16 were positive, but yielded little viral RNA (5370 copies per mL). No virus was detected in blood. The full virus genome was combined with four other available full genome sequences in a maximum likelihood phylogeny, correlating branch lengths with dates of isolation. The time of the common ancestor was halfway through 2011. Addition of novel genome data from an unlinked case treated 6 months previously in Essen, Germany, showed a clustering of viruses derived from Qatar and the United Arab Emirates. Interpretation We have provided the first complete viral load profile in a case of MERS-CoV infection. MERS-CoV might have shedding patterns that are different from those of severe acute respiratory syndrome and so might need alternative diagnostic approaches. Funding European Union; German Centre for Infection Research; German Research Council; and German Ministry for Education and Research.


Nature | 2004

Anthrax kills wild chimpanzees in a tropical rainforest

Fabian H. Leendertz; Heinz Ellerbrok; Christophe Boesch; Emmanuel Couacy-Hymann; Kerstin Mätz-Rensing; Regine Hakenbeck; Carina Bergmann; Pola Abaza; Sandra Junglen; Yasmin Moebius; Linda Vigilant; Pierre Formenty; Georg Pauli

Infectious disease has joined habitat loss and hunting as threats to the survival of the remaining wild populations of great apes. Nevertheless, relatively little is known about the causative agents. We investigated an unusually high number of sudden deaths observed over nine months in three communities of wild chimpanzees (Pan troglodytes verus) in the Taï National Park, Ivory Coast. Here we report combined pathological, cytological and molecular investigations that identified Bacillus anthracis as the cause of death for at least six individuals. We show that anthrax can be found in wild non-human primates living in a tropical rainforest, a habitat not previously known to harbour B. anthracis. Anthrax is an acute disease that infects ruminants, but other mammals, including humans, can be infected through contacting or inhaling high doses of spores or by consuming meat from infected animals. Respiratory and gastrointestinal anthrax are characterized by rapid onset, fever, septicaemia and a high fatality rate without early antibiotic treatment. Our results suggest that epidemic diseases represent substantial threats to wild ape populations, and through bushmeat consumption also pose a hazard to human health.


Mbio | 2011

An Insect Nidovirus Emerging from a Primary Tropical Rainforest

Florian Zirkel; Andreas Kurth; Phenix-Lan Quan; Thomas Briese; Heinz Ellerbrok; Georg Pauli; Fabian H. Leendertz; W. Ian Lipkin; John Ziebuhr; Christian Drosten; Sandra Junglen

ABSTRACT Tropical rainforests show the highest level of terrestrial biodiversity and may be an important contributor to microbial diversity. Exploitation of these ecosystems may foster the emergence of novel pathogens. We report the discovery of the first insect-associated nidovirus, tentatively named Cavally virus (CAVV). CAVV was found with a prevalence of 9.3% during a survey of mosquito-associated viruses along an anthropogenic disturbance gradient in Côte d’Ivoire. Analysis of habitat-specific virus diversity and ancestral state reconstruction demonstrated an origin of CAVV in a pristine rainforest with subsequent spread into agriculture and human settlements. Virus extension from the forest was associated with a decrease in virus diversity (P < 0.01) and an increase in virus prevalence (P < 0.00001). CAVV is an enveloped virus with large surface projections. The RNA genome comprises 20,108 nucleotides with seven major open reading frames (ORFs). ORF1a and -1b encode two large proteins that share essential features with phylogenetically higher representatives of the order Nidovirales, including the families Coronavirinae and Torovirinae, but also with families in a basal phylogenetic relationship, including the families Roniviridae and Arteriviridae. Genetic markers uniquely conserved in nidoviruses, such as an endoribonuclease- and helicase-associated zinc-binding domain, are conserved in CAVV. ORF2a and -2b are predicted to code for structural proteins S and N, respectively, while ORF3a and -3b encode proteins with membrane-spanning regions. CAVV produces three subgenomic mRNAs with 5′ leader sequences (of different lengths) derived from the 5′ end of the genome. This novel cluster of mosquito-associated nidoviruses is likely to represent a novel family within the order Nidovirales. IMPORTANCE Knowledge of microbial diversity in tropical rainforests is sparse, and factors driving the emergence of novel pathogens are poorly understood. We discovered and mapped the spread and genetic evolution of a novel mosquito nidovirus from a pristine rainforest to human settlements. Notably, virus diversity decreased and prevalence increased during the process of spreading into disturbed habitats. The novel virus, tentatively termed Cavally virus, contains genetic features common to members of the order Nidovirales (families Coronaviridae, Arteriviridae, and Roniviridae), including conservation of the replicase machinery and expression of subgenomic RNA messages, has a basal phylogenetic relationship to the family Coronaviridae, and clearly differs from the established nidovirus families. Inclusion of this putative novel family in the nidovirus phylogeny suggests that nidoviruses may have evolved from arthropods. Knowledge of microbial diversity in tropical rainforests is sparse, and factors driving the emergence of novel pathogens are poorly understood. We discovered and mapped the spread and genetic evolution of a novel mosquito nidovirus from a pristine rainforest to human settlements. Notably, virus diversity decreased and prevalence increased during the process of spreading into disturbed habitats. The novel virus, tentatively termed Cavally virus, contains genetic features common to members of the order Nidovirales (families Coronaviridae, Arteriviridae, and Roniviridae), including conservation of the replicase machinery and expression of subgenomic RNA messages, has a basal phylogenetic relationship to the family Coronaviridae, and clearly differs from the established nidovirus families. Inclusion of this putative novel family in the nidovirus phylogeny suggests that nidoviruses may have evolved from arthropods.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Evolutionary and phenotypic analysis of live virus isolates suggests arthropod origin of a pathogenic RNA virus family

Marco Marklewitz; Florian Zirkel; Andreas Kurth; Christian Drosten; Sandra Junglen

Significance Knowledge of the origin and evolution of viruses provides important insight into virus emergence involving the acquisition of genes necessary for the infection of new host species or the development of pathogenicity. The family Bunyaviridae contains important arthropod-borne pathogens of humans, animals, and plants. In this study, we provide a comprehensive characterization of two novel lineages of insect-specific bunyaviruses that are in basal phylogenetic relationship to the rodent-borne hantaviruses, the only genus within the Bunyaviridae that is not transmitted by arthropod vectors. These data, together with ancestral state reconstruction of bunyavirus hosts for major virus lineage bifurcations, suggest that the vertebrate-infecting viruses evolved from arthropod-specific progenitors. The evolutionary origins of arboviruses are unknown because their typical dual host tropism is paraphyletic within viral families. Here we studied one of the most diversified and medically relevant RNA virus families, the Bunyaviridae, in which four of five established genera are transmitted by arthropods. We define two cardinally novel bunyavirus groups based on live isolation of 26 viral strains from mosquitoes (Jonchet virus [JONV], eight strains; Ferak virus [FERV], 18 strains). Both viruses were incapable of replicating at vertebrate-typical temperatures but replicated efficiently in insect cells. Replication involved formation of virion-sense RNA (vRNA) and mRNA, including cap-snatching activity. SDS/PAGE, mass spectrometry, and Edman degradation identified translation products corresponding to virion-associated RNA-dependent RNA polymerase protein (RdRp), glycoprotein precursor protein, glycoproteins Gn and Gc, as well as putative nonstructural proteins NSs and NSm. Distinct virion morphologies suggested ancient evolutionary divergence, with bunyavirus-typical morphology for FERV (spheres of 60–120 nm) as opposed to an unusual bimorphology for JONV (tubular virions of 60 × 600 nm and spheres of 80 nm). Both viruses were genetically equidistant from all other bunyaviruses, showing <15% amino acid identity in the RdRp palm domain. Both had different and unique conserved genome termini, as in separate bunyavirus genera. JONV and FERV define two novel sister taxons to the superclade of orthobunyaviruses, tospoviruses, and hantaviruses. Phylogenetic ancestral state reconstruction with probabilistic hypothesis testing suggested ancestral associations with arthropods at deep nodes throughout the bunyavirus tree. Our findings suggest an arthropod origin of bunyaviruses.


Archives of Virology | 2012

Mesoniviridae: a proposed new family in the order Nidovirales formed by a single species of mosquito-borne viruses

Chris Lauber; John Ziebuhr; Sandra Junglen; Christian Drosten; Florian Zirkel; Phan Thi Nga; Kouichi Morita; Eric J. Snijder; Alexander E. Gorbalenya

Recently, two independent surveillance studies in Côte d’Ivoire and Vietnam, respectively, led to the discovery of two mosquito-borne viruses, Cavally virus and Nam Dinh virus, with genome and proteome properties typical for viruses of the order Nidovirales. Using a state-of-the-art approach, we show that the two insect nidoviruses are (i) sufficiently different from other nidoviruses to represent a new virus family, and (ii) related to each other closely enough to be placed in the same virus species. We propose to name this new family Mesoniviridae. Meso is derived from the Greek word “mesos” (in English “in the middle”) and refers to the distinctive genome size of these insect nidoviruses, which is intermediate between that of the families Arteriviridae and Coronaviridae, while ni is an abbreviation for “nido”. A taxonomic proposal to establish the new family Mesoniviridae, genus Alphamesonivirus, and species Alphamesonivirus 1 has been approved for consideration by the Executive Committee of the ICTV.


Journal of Virology | 2008

Interspecies Transmission of Simian Foamy Virus in a Natural Predator-Prey System

Fabian H. Leendertz; Florian Zirkel; Emmanuel Couacy-Hymann; Heinz Ellerbrok; Vladimir A. Morozov; Georg Pauli; Claudia Hedemann; Pierre Formenty; Siv Aina Jensen; Christophe Boesch; Sandra Junglen

ABSTRACT Simian foamy viruses (SFV) are ancient retroviruses of primates and have coevolved with their host species for as many as 30 million years. Although humans are not naturally infected with foamy virus, infection is occasionally acquired through interspecies transmission from nonhuman primates. We show that interspecies transmissions occur in a natural hunter-prey system, i.e., between wild chimpanzees and colobus monkeys, both of which harbor their own species-specific strains of SFV. Chimpanzees infected with chimpanzee SFV strains were shown to be coinfected with SFV from colobus monkeys, indicating that apes are susceptible to SFV superinfection, including highly divergent strains from other primate species.


Journal of Virology | 2004

High Variety of Different Simian T-Cell Leukemia Virus Type 1 Strains in Chimpanzees (Pan troglodytes verus) of the Taï National Park, Côte d'Ivoire

Fabian H. Leendertz; Sandra Junglen; Christophe Boesch; Pierre Formenty; Emmanuel Couacy-Hymann; Valérie Courgnaud; Georg Pauli; Heinz Ellerbrok

ABSTRACT We found human T-cell leukemia virus type 1- and simian T-cell leukemia virus type 1 (STLV-1)-related infections in 5 of 10 chimpanzees originating from three groups of wild chimpanzees. The new virus isolates showed a surprising heterogeneity not only in comparison to STLV-1 described previously in other primate species but also between the different chimpanzee groups, within a group, or even between strains isolated from an individual animal. The interdisciplinary combination of virology, molecular epidemiology, and long-term behavioral studies suggests that the primary route of infection might be interspecies transmission from other primates, such as red colobus monkeys, that are hunted and consumed by chimpanzees.


Current Opinion in Microbiology | 2013

Virus discovery and recent insights into virus diversity in arthropods

Sandra Junglen; Christian Drosten

Recent studies on virus discovery have focused mainly on mammalian and avian viruses. Arbovirology with its long tradition of ecologically oriented investigation is now catching up, with important novel insights into the diversity of arthropod-associated viruses. Recent discoveries include taxonomically outlying viruses within the families Flaviviridae, Togaviridae, and Bunyaviridae, and even novel virus families within the order Nidovirales. However, the current focusing of studies on blood-feeding arthropods has restricted the range of arthropod hosts analyzed for viruses so far. Future investigations should include species from other arthropod taxa than Ixodita, Culicidae and Phlebotominae in order to shed light on the true diversity of arthropod viruses.


Nucleic Acids Research | 2014

Mosquito and Drosophila entomobirnaviruses suppress dsRNA- and siRNA-induced RNAi

Koen W.R. van Cleef; Joël T. van Mierlo; Pascal Miesen; Gijs J. Overheul; Jelke J. Fros; Susan Schuster; Marco Marklewitz; Gorben P. Pijlman; Sandra Junglen; Ronald P. van Rij

RNA interference (RNAi) is a crucial antiviral defense mechanism in insects, including the major mosquito species that transmit important human viruses. To counteract the potent antiviral RNAi pathway, insect viruses encode RNAi suppressors. However, whether mosquito-specific viruses suppress RNAi remains unclear. We therefore set out to study RNAi suppression by Culex Y virus (CYV), a mosquito-specific virus of the Birnaviridae family that was recently isolated from Culex pipiens mosquitoes. We found that the Culex RNAi machinery processes CYV double-stranded RNA (dsRNA) into viral small interfering RNAs (vsiRNAs). Furthermore, we show that RNAi is suppressed in CYV-infected cells and that the viral VP3 protein is responsible for RNAi antagonism. We demonstrate that VP3 can functionally replace B2, the well-characterized RNAi suppressor of Flock House virus. VP3 was found to bind long dsRNA as well as siRNAs and interfered with Dicer-2-mediated cleavage of long dsRNA into siRNAs. Slicing of target RNAs by pre-assembled RNA-induced silencing complexes was not affected by VP3. Finally, we show that the RNAi-suppressive activity of VP3 is conserved in Drosophila X virus, a birnavirus that persistently infects Drosophila cell cultures. Together, our data indicate that mosquito-specific viruses may encode RNAi antagonists to suppress antiviral RNAi.


Ecohealth | 2009

Examining Landscape Factors Influencing Relative Distribution of Mosquito Genera and Frequency of Virus Infection

Sandra Junglen; A. Kurth; H. Kuehl; P. L. Quan; Heinz Ellerbrok; Georg Pauli; A. Nitsche; Charles L. Nunn; Stephen M. Rich; W. I. Lipkin; T. Briese; Fabian H. Leendertz

Mosquito-borne infections cause some of the most debilitating human diseases, including yellow fever and malaria, yet we lack an understanding of how disease risk scales with human-driven habitat changes. We present an approach to study variation in mosquito distribution and concomitant viral infections on the landscape level. In a pilot study we analyzed mosquito distribution along a 10-km transect of a West African rainforest area, which included primary forest, secondary forest, plantations, and human settlements. Variation was observed in the abundance of Anopheles, Aedes,Culex, and Uranotaenia mosquitoes between the different habitat types. Screening of trapped mosquitoes from the different habitats led to the isolation of five uncharacterized viruses of the families Bunyaviridae, Coronaviridae, Flaviviridae, and Rhabdoviridae, as well as an unclassified virus. Polymerase chain reaction screening for these five viruses in individual mosquitoes indicated a trend toward infection with specific viruses in specific mosquito genera that differed by habitat. Based on these initial analyses, we believe that further work is indicated to investigate the impact of anthropogenic landscape changes on mosquito distribution and accompanying arbovirus infection.

Collaboration


Dive into the Sandra Junglen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Briese

University of California

View shared research outputs
Researchain Logo
Decentralizing Knowledge