Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fabiana Perna is active.

Publication


Featured researches published by Fabiana Perna.


Cancer Cell | 2011

Tet2 Loss Leads to Increased Hematopoietic Stem Cell Self-Renewal and Myeloid Transformation

Kelly Moran-Crusio; Linsey Reavie; Alan Shih; Omar Abdel-Wahab; Delphine Ndiaye-Lobry; Camille Lobry; Maria E. Figueroa; Aparna Vasanthakumar; Jay Patel; Xinyang Zhao; Fabiana Perna; Suveg Pandey; Jozef Madzo; Chun-Xiao Song; Qing Dai; Chuan He; Sherif Ibrahim; Miloslav Beran; Jiri Zavadil; Stephen D. Nimer; Ari Melnick; Lucy A. Godley; Iannis Aifantis; Ross L. Levine

Somatic loss-of-function mutations in the ten-eleven translocation 2 (TET2) gene occur in a significant proportion of patients with myeloid malignancies. Although there are extensive genetic data implicating TET2 mutations in myeloid transformation, the consequences of Tet2 loss in hematopoietic development have not been delineated. We report here an animal model of conditional Tet2 loss in the hematopoietic compartment that leads to increased stem cell self-renewal in vivo as assessed by competitive transplant assays. Tet2 loss leads to a progressive enlargement of the hematopoietic stem cell compartment and eventual myeloproliferation in vivo, including splenomegaly, monocytosis, and extramedullary hematopoiesis. In addition, Tet2(+/-) mice also displayed increased stem cell self-renewal and extramedullary hematopoiesis, suggesting that Tet2 haploinsufficiency contributes to hematopoietic transformation in vivo.


Nature Chemical Biology | 2011

Affinity-based proteomics reveal cancer-specific networks coordinated by Hsp90

Kamalika Moulick; James H. Ahn; Hongliang Zong; Anna Rodina; Leandro Cerchietti; Erica Gomes DaGama; Eloisi Caldas-Lopes; Kristin Beebe; Fabiana Perna; Katerina Hatzi; Ly P. Vu; Xinyang Zhao; Danuta Zatorska; Tony Taldone; Peter Smith-Jones; Mary L. Alpaugh; Steven S. Gross; Nagavarakishore Pillarsetty; Thomas Ku; Jason S. Lewis; Steven M. Larson; Ross L. Levine; Hediye Erdjument-Bromage; Monica L. Guzman; Stephen D. Nimer; Ari Melnick; Len Neckers; Gabriela Chiosis

Most cancers are characterized by multiple molecular alterations, but identification of the key proteins involved in these signaling pathways is currently beyond reach. We show that the inhibitor PU-H71 preferentially targets tumor-enriched Hsp90 complexes and affinity captures Hsp90-dependent oncogenic client proteins. We have used PU-H71 affinity capture to design a proteomic approach that, when combined with bioinformatic pathway analysis, identifies dysregulated signaling networks and key oncoproteins in chronic myeloid leukemia. The identified interactome overlaps with the well-characterized altered proteome in this cancer, indicating that this method can provide global insights into the biology of individual tumors, including primary patient specimens. In addition, we show that this approach can be used to identify previously uncharacterized oncoproteins and mechanisms, potentially leading to new targeted therapies. We further show that the abundance of the PU-H71-enriched Hsp90 species, which is not dictated by Hsp90 expression alone, is predictive of the cells sensitivity to Hsp90 inhibition.


Cancer Cell | 2011

JAK2V617F-mediated phosphorylation of PRMT5 downregulates its methyltransferase activity and promotes myeloproliferation.

Fan Liu; Xinyang Zhao; Fabiana Perna; Lan Wang; Priya Koppikar; Omar Abdel-Wahab; Michael W. Harr; Ross L. Levine; Hao Xu; Ayalew Tefferi; Anthony Deblasio; Megan Hatlen; Silvia Menendez; Stephen D. Nimer

The JAK2V617F constitutively activated tyrosine kinase is found in most patients with myeloproliferative neoplasms. While examining the interaction between JAK2 and PRMT5, an arginine methyltransferase originally identified as JAK-binding protein 1, we found that JAK2V617F (and JAK2K539L) bound PRMT5 more strongly than did wild-type JAK2. These oncogenic kinases also acquired the ability to phosphorylate PRMT5, greatly impairing its ability to methylate its histone substrates, and representing a specific gain-of-function that allows them to regulate chromatin modifications. We readily detected PRMT5 phosphorylation in JAK2V617F-positive patient samples, and when we knocked down PRMT5 in human CD34+ cells using shRNA, we observed increased colony formation and erythroid differentiation. These results indicate that phosphorylation of PRMT5 contributes to the mutant JAK2-induced myeloproliferative phenotype.


Science | 2011

The Leukemogenicity of AML1-ETO Is Dependent on Site-Specific Lysine Acetylation

Lan Wang; Alexander Gural; Xiao Jian Sun; Xinyang Zhao; Fabiana Perna; Gang Huang; Megan Hatlen; Ly P. Vu; Fan Liu; Haiming Xu; Takashi Asai; Hao Xu; Tony DeBlasio; Silvia Menendez; Francesca Voza; Yanwen Jiang; Philip A. Cole; Zhang J; Ari Melnick; Robert G. Roeder; Stephen D. Nimer

A protein that drives the growth of leukemia does so only when it carries a specific posttranslational modification. The chromosomal translocations found in acute myelogenous leukemia (AML) generate oncogenic fusion transcription factors with aberrant transcriptional regulatory properties. Although therapeutic targeting of most leukemia fusion proteins remains elusive, the posttranslational modifications that control their function could be targetable. We found that AML1-ETO, the fusion protein generated by the t(8;21) translocation, is acetylated by the transcriptional coactivator p300 in leukemia cells isolated from t(8;21) AML patients, and that this acetylation is essential for its self-renewal–promoting effects in human cord blood CD34+ cells and its leukemogenicity in mouse models. Inhibition of p300 abrogates the acetylation of AML1-ETO and impairs its ability to promote leukemic transformation. Thus, lysine acetyltransferases represent a potential therapeutic target in AML.


Blood | 2010

Depletion of L3MBTL1 promotes the erythroid differentiation of human hematopoietic progenitor cells: Possible role in 20q - Polycythemia vera

Fabiana Perna; Nadia Gurvich; Ruben Hoya-Arias; Omar Abdel-Wahab; Ross L. Levine; Takashi Asai; Francesca Voza; Silvia Menendez; Lan Wang; Fan Liu; Xinyang Zhao; Stephen D. Nimer

L3MBTL1, the human homolog of the Drosophila L(3)MBT polycomb group tumor suppressor gene, is located on chromosome 20q12, within the common deleted region identified in patients with 20q deletion-associated polycythemia vera, myelodysplastic syndrome, and acute myeloid leukemia. L3MBTL1 is expressed within hematopoietic CD34(+) cells; thus, it may contribute to the pathogenesis of these disorders. To define its role in hematopoiesis, we knocked down L3MBTL1 expression in primary hematopoietic stem/progenitor (ie, CD34(+)) cells isolated from human cord blood (using short hairpin RNAs) and observed an enhanced commitment to and acceleration of erythroid differentiation. Consistent with this effect, overexpression of L3MBTL1 in primary hematopoietic CD34(+) cells as well as in 20q- cell lines restricted erythroid differentiation. Furthermore, L3MBTL1 levels decrease during hemin-induced erythroid differentiation or erythropoietin exposure, suggesting a specific role for L3MBTL1 down-regulation in enforcing cell fate decisions toward the erythroid lineage. Indeed, L3MBTL1 knockdown enhanced the sensitivity of hematopoietic stem/progenitor cells to erythropoietin (Epo), with increased Epo-induced phosphorylation of STAT5, AKT, and MAPK as well as detectable phosphorylation in the absence of Epo. Our data suggest that haploinsufficiency of L3MBTL1 contributes to some (20q-) myeloproliferative neoplasms, especially polycythemia vera, by promoting erythroid differentiation.


Proceedings of the National Academy of Sciences of the United States of America | 2010

L3MBTL1 polycomb protein, a candidate tumor suppressor in del(20q12) myeloid disorders, is essential for genome stability

Nadia Gurvich; Fabiana Perna; Andrea Farina; Francesca Voza; Silvia Menendez; Jerard Hurwitz; Stephen D. Nimer

The l3mbtl1 gene is located on the long arm of chromosome 20 (q12), within a region commonly deleted in several myeloid malignancies. L3MBTL1 is a human homolog of the Drosophila polycomb L(3)MBT tumor suppressor protein and thus a candidate tumor suppressor in del(20q12) myeloid disorders. We used the loss-of-function approach to explore the possible tumor suppressive mechanism of L3MBTL1 and found that depletion of L3MBTL1 from human cells causes replicative stress, DNA breaks, activation of the DNA damage response, and genomic instability. L3MBTL1 interacts with Cdc45, MCM2-7 and PCNA, components of the DNA replication machinery, and is required for normal replication fork progression, suggesting that L3MBTL1 causes DNA damage, at least in part, by perturbing DNA replication. An activated DNA damage response and genomic instability are common features in tumorigenesis and a consequence of overexpression of many oncogenes. We propose that the loss of L3MBTL1 contributes to the development of 20q− hematopoietic malignancies by inducing replicative stress, DNA damage, and genomic instability.


Nature Biotechnology | 2015

Functional analysis of a chromosomal deletion associated with myelodysplastic syndromes using isogenic human induced pluripotent stem cells

Andriana Kotini; Chan Jung Chang; Ibrahim Boussaad; Jeffrey J. Delrow; Emily K. Dolezal; Abhinav B. Nagulapally; Fabiana Perna; Gregory A. Fishbein; Virginia M. Klimek; R. David Hawkins; Danwei Huangfu; Charles E. Murry; Timothy A. Graubert; Stephen D. Nimer; Eirini P. Papapetrou

Chromosomal deletions associated with human diseases, such as cancer, are common, but synteny issues complicate modeling of these deletions in mice. We use cellular reprogramming and genome engineering to functionally dissect the loss of chromosome 7q (del(7q)), a somatic cytogenetic abnormality present in myelodysplastic syndromes (MDS). We derive del(7q)- and isogenic karyotypically normal induced pluripotent stem cells (iPSCs) from hematopoietic cells of MDS patients and show that the del(7q) iPSCs recapitulate disease-associated phenotypes, including impaired hematopoietic differentiation. These disease phenotypes are rescued by spontaneous dosage correction and can be reproduced in karyotypically normal cells by engineering hemizygosity of defined chr7q segments in a 20-Mb region. We use a phenotype-rescue screen to identify candidate haploinsufficient genes that might mediate the del(7q)- hematopoietic defect. Our approach highlights the utility of human iPSCs both for functional mapping of disease-associated large-scale chromosomal deletions and for discovery of haploinsufficient genes.


Journal of Hepatology | 2008

Antiviral therapy after complete response to chemotherapy could be efficacious in HCV-positive non-Hodgkin’s lymphoma

Vincenzo La Mura; Amalia De Renzo; Fabiana Perna; Diego D’Agostino; Mario Masarone; Marco Romano; Savino Bruno; Roberto Torella; Marcello Persico

BACKGROUND/AIMS Prevalence of HCV infection in non-Hodgkins lymphoma is high. The impact of antiviral therapy on the natural history of this subgroup of lymphomas after a successful chemotherapy regimen is still an argument of debate. METHODS We retrospectively examined 343 chemotherapy-treated patients referred to our centre for five consecutive years. Clinical and histological characteristics, disease free-survival (DFS) and overall-survival (OS) were compared in HCV-positive (69/343) and HCV-negative (274/343) patients. Twenty-five HCV-positive patients received antiviral treatment following chemotherapy discontinuation. Uni- and multivariate analyses were performed. RESULTS 20% of lymphomas were HCV-positive. Indolent histology was prevalent in the HCV-positive group (p<0.05); no significant differences in OS or DFS were found between the two groups; in HCV-positive subjects, antiviral therapy, was associated with a longer DFS (p<0.05); none of the HCV-positive subjects who achieved a virological response experienced any lymphoma relapse; 29% of non responders did; at multivariate analysis, the independent factors related to a better clinical outcome were: indolent histology at the onset of lymphoma and antiviral therapy. CONCLUSIONS Antiviral treatment in HCV-positive non-Hodgkins lymphoma may be an important strategy to reinforce the results of a successful chemotherapy regimen; further studies are needed to validate this combined approach.


Nature Medicine | 2017

Donor CD19 CAR T cells exert potent graft-versus-lymphoma activity with diminished graft-versus-host activity

Arnab Ghosh; Melody Smith; Scott James; Marco L. Davila; Enrico Velardi; Kimon V. Argyropoulos; Gertrude Gunset; Fabiana Perna; Fabiana M Kreines; Emily R Levy; Sophie Lieberman; Hillary Jay; Andrea Z. Tuckett; Johannes L. Zakrzewski; Lisa Tan; Lauren F. Young; Kate Takvorian; Jarrod A. Dudakov; Robert R. Jenq; Alan M. Hanash; Ana Carolina Fragoso Motta; George F. Murphy; Chen Liu; Andrea Schietinger; Michel Sadelain; Marcel R.M. van den Brink

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative therapy for hematological malignancies. However, graft-versus-host disease (GVHD) and relapse after allo-HSCT remain major impediments to the success of allo-HSCT. Chimeric antigen receptors (CARs) direct tumor cell recognition of adoptively transferred T cells. CD19 is an attractive CAR target, which is expressed in most B cell malignancies, as well as in healthy B cells. Clinical trials using autologous CD19-targeted T cells have shown remarkable promise in various B cell malignancies. However, the use of allogeneic CAR T cells poses a concern in that it may increase risk of the occurrence of GVHD, although this has not been reported in selected patients infused with donor-derived CD19 CAR T cells after allo-HSCT. To understand the mechanism whereby allogeneic CD19 CAR T cells may mediate anti-lymphoma activity without causing a significant increase in the incidence of GVHD, we studied donor-derived CD19 CAR T cells in allo-HSCT and lymphoma models in mice. We demonstrate that alloreactive T cells expressing CD28-costimulated CD19 CARs experience enhanced stimulation, resulting in the progressive loss of both their effector function and proliferative potential, clonal deletion, and significantly decreased occurrence of GVHD. Concurrently, the other CAR T cells that were present in bulk donor T cell populations retained their anti-lymphoma activity in accordance with the requirement that both the T cell receptor (TCR) and CAR be engaged to accelerate T cell exhaustion. In contrast, first-generation and 4-1BB-costimulated CAR T cells increased the occurrence of GVHD. These findings could explain the reduced risk of GVHD occurring with cumulative TCR and CAR signaling.


Nature Communications | 2016

Self-renewal of CD133(hi) cells by IL6/Notch3 signalling regulates endocrine resistance in metastatic breast cancer.

Pasquale Sansone; Claudio Ceccarelli; Marjan Berishaj; Qing Chang; Vinagolu K. Rajasekhar; Fabiana Perna; Robert L. Bowman; Michele Vidone; Laura Daly; Jennifer Nnoli; Donatella Santini; Mario Taffurelli; Natalie Shih; Michael Feldman; Jun J. Mao; Christopher Colameco; Jinbo Chen; Angela DeMichele; Nicola Fabbri; John H. Healey; Monica Cricca; Giuseppe Gasparre; David Lyden; Massimiliano Bonafè; Jacqueline Bromberg

The mechanisms of metastatic progression from hormonal therapy (HT) are largely unknown in luminal breast cancer. Here we demonstrate the enrichment of CD133hi/ERlo cancer cells in clinical specimens following neoadjuvant endocrine therapy and in HT refractory metastatic disease. We develop experimental models of metastatic luminal breast cancer and demonstrate that HT can promote the generation of HT-resistant, self-renewing CD133hi/ERlo/IL6hi cancer stem cells (CSCs). HT initially abrogates oxidative phosphorylation (OXPHOS) generating self-renewal-deficient cancer cells, CD133hi/ERlo/OXPHOSlo. These cells exit metabolic dormancy via an IL6-driven feed-forward ERlo-IL6hi-Notchhi loop, activating OXPHOS, in the absence of ER activity. The inhibition of IL6R/IL6-Notch pathways switches the self-renewal of CD133hi CSCs, from an IL6/Notch-dependent one to an ER-dependent one, through the re-expression of ER. Thus, HT induces an OXPHOS metabolic editing of luminal breast cancers, paradoxically establishing HT-driven self-renewal of dormant CD133hi/ERlo cells mediating metastatic progression, which is sensitive to dual targeted therapy.

Collaboration


Dive into the Fabiana Perna's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xinyang Zhao

University of Alabama at Birmingham

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ly P. Vu

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ross L. Levine

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Michel Sadelain

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Amalia De Renzo

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Lan Wang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francesca Voza

Memorial Sloan Kettering Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge