Francesca Voza
Memorial Sloan Kettering Cancer Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Francesca Voza.
Science | 2011
Lan Wang; Alexander Gural; Xiao Jian Sun; Xinyang Zhao; Fabiana Perna; Gang Huang; Megan Hatlen; Ly P. Vu; Fan Liu; Haiming Xu; Takashi Asai; Hao Xu; Tony DeBlasio; Silvia Menendez; Francesca Voza; Yanwen Jiang; Philip A. Cole; Zhang J; Ari Melnick; Robert G. Roeder; Stephen D. Nimer
A protein that drives the growth of leukemia does so only when it carries a specific posttranslational modification. The chromosomal translocations found in acute myelogenous leukemia (AML) generate oncogenic fusion transcription factors with aberrant transcriptional regulatory properties. Although therapeutic targeting of most leukemia fusion proteins remains elusive, the posttranslational modifications that control their function could be targetable. We found that AML1-ETO, the fusion protein generated by the t(8;21) translocation, is acetylated by the transcriptional coactivator p300 in leukemia cells isolated from t(8;21) AML patients, and that this acetylation is essential for its self-renewal–promoting effects in human cord blood CD34+ cells and its leukemogenicity in mouse models. Inhibition of p300 abrogates the acetylation of AML1-ETO and impairs its ability to promote leukemic transformation. Thus, lysine acetyltransferases represent a potential therapeutic target in AML.
Journal of Clinical Investigation | 2013
Julio C. Ricarte-Filho; Sheng Li; Maria E.R. Garcia-Rendueles; Cristina Montero-Conde; Francesca Voza; Jeffrey A. Knauf; Adriana Heguy; Agnes Viale; Tetyana I. Bogdanova; Christopher E. Mason; James A. Fagin
Exposure to ionizing radiation during childhood markedly increases the risk of developing papillary thyroid cancer. We examined tissues from 26 Ukrainian patients with thyroid cancer who were younger than 10 years of age and living in contaminated areas during the time of the Chernobyl nuclear reactor accident. We identified nonoverlapping somatic driver mutations in all 26 cases through candidate gene assays and next-generation RNA sequencing. We found that 22 tumors harbored fusion oncogenes that arose primarily through intrachromosomal rearrangements. Altogether, 23 of the oncogenic drivers identified in this cohort aberrantly activate MAPK signaling, including the 2 somatic rearrangements resulting in fusion of transcription factor ETS variant 6 (ETV6) with neurotrophic tyrosine kinase receptor, type 3 (NTRK3) and fusion of acylglycerol kinase (AGK) with BRAF. Two other tumors harbored distinct fusions leading to overexpression of the nuclear receptor PPARγ. Fusion oncogenes were less prevalent in tumors from a cohort of children with pediatric thyroid cancers that had not been exposed to radiation but were from the same geographical regions. Radiation-induced thyroid cancers provide a paradigm of tumorigenesis driven by fusion oncogenes that activate MAPK signaling or, less frequently, a PPARγ-driven transcriptional program.
Blood | 2010
Fabiana Perna; Nadia Gurvich; Ruben Hoya-Arias; Omar Abdel-Wahab; Ross L. Levine; Takashi Asai; Francesca Voza; Silvia Menendez; Lan Wang; Fan Liu; Xinyang Zhao; Stephen D. Nimer
L3MBTL1, the human homolog of the Drosophila L(3)MBT polycomb group tumor suppressor gene, is located on chromosome 20q12, within the common deleted region identified in patients with 20q deletion-associated polycythemia vera, myelodysplastic syndrome, and acute myeloid leukemia. L3MBTL1 is expressed within hematopoietic CD34(+) cells; thus, it may contribute to the pathogenesis of these disorders. To define its role in hematopoiesis, we knocked down L3MBTL1 expression in primary hematopoietic stem/progenitor (ie, CD34(+)) cells isolated from human cord blood (using short hairpin RNAs) and observed an enhanced commitment to and acceleration of erythroid differentiation. Consistent with this effect, overexpression of L3MBTL1 in primary hematopoietic CD34(+) cells as well as in 20q- cell lines restricted erythroid differentiation. Furthermore, L3MBTL1 levels decrease during hemin-induced erythroid differentiation or erythropoietin exposure, suggesting a specific role for L3MBTL1 down-regulation in enforcing cell fate decisions toward the erythroid lineage. Indeed, L3MBTL1 knockdown enhanced the sensitivity of hematopoietic stem/progenitor cells to erythropoietin (Epo), with increased Epo-induced phosphorylation of STAT5, AKT, and MAPK as well as detectable phosphorylation in the absence of Epo. Our data suggest that haploinsufficiency of L3MBTL1 contributes to some (20q-) myeloproliferative neoplasms, especially polycythemia vera, by promoting erythroid differentiation.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Nadia Gurvich; Fabiana Perna; Andrea Farina; Francesca Voza; Silvia Menendez; Jerard Hurwitz; Stephen D. Nimer
The l3mbtl1 gene is located on the long arm of chromosome 20 (q12), within a region commonly deleted in several myeloid malignancies. L3MBTL1 is a human homolog of the Drosophila polycomb L(3)MBT tumor suppressor protein and thus a candidate tumor suppressor in del(20q12) myeloid disorders. We used the loss-of-function approach to explore the possible tumor suppressive mechanism of L3MBTL1 and found that depletion of L3MBTL1 from human cells causes replicative stress, DNA breaks, activation of the DNA damage response, and genomic instability. L3MBTL1 interacts with Cdc45, MCM2-7 and PCNA, components of the DNA replication machinery, and is required for normal replication fork progression, suggesting that L3MBTL1 causes DNA damage, at least in part, by perturbing DNA replication. An activated DNA damage response and genomic instability are common features in tumorigenesis and a consequence of overexpression of many oncogenes. We propose that the loss of L3MBTL1 contributes to the development of 20q− hematopoietic malignancies by inducing replicative stress, DNA damage, and genomic instability.
Cell Reports | 2013
Ly P. Vu; Fabiana Perna; Lan Wang; Francesca Voza; Maria E. Figueroa; Paul Tempst; Hediye Erdjument-Bromage; Rui Gao; Sisi Chen; Elisabeth Paietta; Tony DeBlasio; Ari Melnick; Yan Liu; Xinyang Zhao; Stephen D. Nimer
Defining the role of epigenetic regulators in hematopoiesis has become critically important, because recurrent mutations or aberrant expression of these genes has been identified in both myeloid and lymphoid hematological malignancies. We found that PRMT4, a type I arginine methyltransferase whose function in normal and malignant hematopoiesis is unknown, is overexpressed in acute myelogenous leukemia patient samples. Overexpression of PRMT4 blocks the myeloid differentiation of human stem/progenitor cells (HSPCs), whereas its knockdown is sufficient to induce myeloid differentiation of HSPCs. We demonstrated that PRMT4 represses the expression of miR-223 in HSPCs via the methylation of RUNX1, which triggers the assembly of a multiprotein repressor complex that includes DPF2. As part of the feedback loop, PRMT4 expression is repressed posttranscriptionally by miR-223. Depletion of PRMT4 results in differentiation of myeloid leukemia cells in vitro and their decreased proliferation in vivo. Thus, targeting PRMT4 holds potential as a novel therapy for acute myelogenous leukemia.
Cancer Discovery | 2015
Maria E.R. Garcia-Rendueles; Julio C. Ricarte-Filho; Brian R. Untch; Iňigo Landa; Jeffrey A. Knauf; Francesca Voza; Vicki Smith; Ian Ganly; Barry S. Taylor; Yogindra Persaud; Gisele Oler; Yuqiang Fang; Suresh C. Jhanwar; Agnes Viale; Adriana Heguy; Kety Huberman; Filippo G. Giancotti; Ronald Ghossein; James A. Fagin
UNLABELLED Ch22q LOH is preferentially associated with RAS mutations in papillary and in poorly differentiated thyroid cancer (PDTC). The 22q tumor suppressor NF2, encoding merlin, is implicated in this interaction because of its frequent loss of function in human thyroid cancer cell lines. Nf2 deletion or Hras mutation is insufficient for transformation, whereas their combined disruption leads to murine PDTC with increased MAPK signaling. Merlin loss induces RAS signaling in part through inactivation of Hippo, which activates a YAP-TEAD transcriptional program. We find that the three RAS genes are themselves YAP-TEAD1 transcriptional targets, providing a novel mechanism of promotion of RAS-induced tumorigenesis. Moreover, pharmacologic disruption of YAP-TEAD with verteporfin blocks RAS transcription and signaling and inhibits cell growth. The increased MAPK output generated by NF2 loss in RAS-mutant cancers may inform therapeutic strategies, as it generates greater dependency on the MAPK pathway for viability. SIGNIFICANCE Intensification of mutant RAS signaling through copy-number imbalances is commonly associated with transformation. We show that NF2/merlin inactivation augments mutant RAS signaling by promoting YAP/TEAD-driven transcription of oncogenic and wild-type RAS, resulting in greater MAPK output and increased sensitivity to MEK inhibitors.
Cell Stem Cell | 2012
Elena Bazzoli; Teodoro Pulvirenti; Moritz C. Oberstadt; Fabiana Perna; Boyoung Wee; Nikolaus Schultz; Jason T. Huse; Elena I. Fomchenko; Francesca Voza; Viviane Tabar; Cameron Brennan; Lisa M. DeAngelis; Stephen D. Nimer; Eric C. Holland; Massimo Squatrito
High-grade gliomas are aggressive and uniformly fatal tumors, composed of a heterogeneous population of cells that include many with stem-cell-like properties. The acquisition of stem-like traits might contribute to glioma initiation, growth, and recurrence. Here we investigated the role of the transcription factor myeloid Elf-1 like factor (MEF, also known as ELF4) in gliomas. We found that MEF is highly expressed in both human and mouse glioblastomas and its absence impairs gliomagenesis in a PDGF-driven glioma mouse model. We show that modulation of MEF levels in both mouse neural stem cells and human glioblastoma cells has a significant impact on neurosphere formation. Moreover, we identify Sox2 as a direct downstream target of MEF. Taken together, our studies implicate MEF as a previously unrecognized gatekeeper gene in gliomagenesis that promotes stem cell characteristics through Sox2 activation.
Journal of Experimental Medicine | 2016
Megan Hatlen; Kanika Arora; Vladimir Vacic; Ewa A. Grabowska; Willey Liao; Bridget Riley-Gillis; Dayna Oschwald; Lan Wang; Jacob E. Joergens; Alan H. Shih; Franck Rapaport; Shengqing Gu; Francesca Voza; Takashi Asai; Benjamin G. Neel; Michael G. Kharas; Mithat Gonen; Ross L. Levine; Stephen D. Nimer
Hatlen et al. provide an integrative analysis of the mutational landscape of mouse and human AML and identify functionally relevant cooperation between AML1-ETO and PTPN11 D61Y. Based on these findings, they generate a novel mouse model of t(8;21)+ AML.
The Journal of Clinical Endocrinology and Metabolism | 2014
Roberta Malaguarnera; Kuen-Yuan Chen; Tae Yong Kim; Jose M. Dominguez; Francesca Voza; Bin Ouyang; Sushil Vundavalli; Jeffrey A. Knauf; James A. Fagin
CONTEXT Thyroid growth is regulated by TSH and requires mammalian target of rapamycin (mTOR). Thyroid cancers frequently exhibit mutations in MAPK and/or phosphoinositol-3-kinase-related kinase effectors. OBJECTIVE The objective of the study was to explore the contribution of RET/PTC, RAS, and BRAF to mTOR regulation and response to mTOR inhibitors. METHODS PCCL3 cells conditionally expressing RET/PTC3, HRAS(G12V), or BRAF(V600E) and human thyroid cancer cells harboring mutations of these genes were used to test pathways controlling mTOR and its requirement for growth. RESULTS TSH/cAMP-induced growth of PCCL3 cells requires mTOR, which is stimulated via protein kinase A in a MAPK kinase (MEK)- and AKT-independent manner. Expression of RET/PTC3, HRAS(G12V), or BRAF(V600E) in PCCL3 cells induces mTOR but does not entirely abrogate the cAMP-mediated control of its activity. Acute oncoprotein-induced mTOR activity is regulated by MEK and AKT, albeit to differing degrees. By contrast, mTOR was not activated by TSH/cAMP in human thyroid cancer cells. Tumor genotype did not predict the effects of rapamycin or the mTOR kinase inhibitor AZD8055 on growth, with the exception of a PTEN-null cell line. Selective blockade of MEK did not influence mTOR activity of BRAF or RAS mutant cells. Combined MEK and mTOR kinase inhibition was synergistic on growth of BRAF- and RAS-mutant thyroid cancer cells in vitro and in vivo. CONCLUSION Thyroid cancer cells lose TSH/cAMP dependency of mTOR signaling and cell growth. mTOR activity is not decreased by the MEK or AKT inhibitors in the RAS or BRAF human thyroid cancer cell lines. This may account for the augmented effects of combining the mTOR inhibitors with selective antagonists of these oncogenic drivers.
Stem Cells and Development | 2011
Ruben Hoya-Arias; Mark Tomishima; Fabiana Perna; Francesca Voza; Stephen D. Nimer
Human embryonic stem cells (hESCs) can be used to study the early events in human development and, hopefully, to understand how to differentiate human pluripotent cells for clinical use. To define how L3MBTL1, a chromatin-associated polycomb group protein with transcriptional repressive activities, regulates early events in embryonic cell differentiation, we created hESC lines that constitutively express shRNAs directed against L3MBTL1. The L3MBTL1 knockdown (KD) hESCs maintained normal morphology, proliferation, cell cycle kinetics, cell surface markers, and karyotype after 40 passages. However, under conditions that promote spontaneous differentiation, the L3MBTL1 KD cells differentiated into a relatively homogeneous population of large, flat trophoblast-like cells, unlike the multilineage differentiation seen with the control cells. The differentiated L3MBTL1 KD cells expressed numerous trophoblast markers and secreted placental hormones. Although the L3MBTL1 KD cells could be induced to differentiate into various embryonic lineages, they adopted an exclusive trophoblast fate during spontaneous differentiation. Our data demonstrate that depletion of L3MBTL1 does not affect hESC self-renewal, rather it enhances differentiation toward extra-embryonic trophoblast tissues.