Fabiana Piscitelli
National Research Council
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fabiana Piscitelli.
Psychoneuroendocrinology | 2012
Elsa Heyman; F.-X. Gamelin; Maaike Goekint; Fabiana Piscitelli; Bart Roelands; Erwan Leclair; V. Di Marzo; Romain Meeusen
The endocannabinoid system is known to have positive effects on depression partly through its actions on neurotrophins, such as Brain-Derived Neurotrophic Factor (BDNF). As BDNF is also considered the major candidate molecule for exercise-induced brain plasticity, we hypothesized that the endocannabinoid system represents a crucial signaling system mediating the beneficial antidepressant effects of exercise. Here we investigated, in 11 healthy trained male cyclists, the effects of an intense exercise (60 min at 55% followed by 30 min at 75% W(max)) on plasma levels of endocannabinoids (anandamide, AEA and 2-arachidonoylglycerol, 2-AG) and their possible link with serum BDNF. AEA levels increased during exercise and the 15 min recovery (P<0.001), whereas 2-AG concentrations remained stable. BDNF levels increased significantly during exercise and then decreased during the 15 min of recovery (P<0.01). Noteworthy, AEA and BDNF concentrations were positively correlated at the end of exercise and after the 15 min recovery (r>0.66, P<0.05), suggesting that AEA increment during exercise might be one of the factors involved in exercise-induced increase in peripheral BDNF levels and that AEA high levels during recovery might delay the return of BDNF to basal levels. AEA production during exercise might be triggered by cortisol since we found positive correlations between these two compounds and because corticosteroids are known to stimulate endocannabinoid biosynthesis. These findings provide evidence in humans that acute exercise represents a physiological stressor able to increase peripheral levels of AEA and that BDNF might be a mechanism by which AEA influences the neuroplastic and antidepressant effects of exercise.
PLOS ONE | 2011
Nicolas Deblon; Christelle Veyrat-Durebex; Lucie Bourgoin; Aurélie Caillon; Anne-Lise Bussier; Stefania Petrosino; Fabiana Piscitelli; Jean-Jacques Legros; Vincent Geenen; Michelangelo Foti; Walter Wahli; Vincenzo Di Marzo; Françoise Rohner-Jeanrenaud
Apart from its role during labor and lactation, oxytocin is involved in several other functions. Interestingly, oxytocin- and oxytocin receptor-deficient mice develop late-onset obesity with normal food intake, suggesting that the hormone might exert a series of beneficial metabolic effects. This was recently confirmed by data showing that central oxytocin infusion causes weight loss in diet-induced obese mice. The aim of the present study was to unravel the mechanisms underlying such beneficial effects of oxytocin. Chronic central oxytocin infusion was carried out in high fat diet-induced obese rats. Its impact on body weight, lipid metabolism and insulin sensitivity was determined. We observed a dose-dependent decrease in body weight gain, increased adipose tissue lipolysis and fatty acid β-oxidation, as well as reduced glucose intolerance and insulin resistance. The additional observation that plasma oxytocin levels increased upon central infusion suggested that the hormone might affect adipose tissue metabolism by direct action. This was demonstrated using in vitro, ex vivo, as well as in vivo experiments. With regard to its mechanism of action in adipose tissue, oxytocin increased the expression of stearoyl-coenzyme A desaturase 1, as well as the tissue content of the phospholipid precursor, N-oleoyl-phosphatidylethanolamine, the biosynthetic precursor of the oleic acid-derived PPAR-alpha activator, oleoylethanolamide. Because PPAR-alpha regulates fatty acid β-oxidation, we hypothesized that this transcription factor might mediate the oxytocin effects. This was substantiated by the observation that, in contrast to its effects in wild-type mice, oxytocin infusion failed to induce weight loss and fat oxidation in PPAR-alpha-deficient animals. Altogether, these results suggest that oxytocin administration could represent a promising therapeutic approach for the treatment of human obesity and type 2 diabetes.
British Journal of Pharmacology | 2009
Angelo A. Izzo; Fabiana Piscitelli; Raffaele Capasso; Gabriella Aviello; Barbara Romano; Francesca Borrelli; Stefania Petrosino; Vincenzo Di Marzo
Background and purpose: Endocannabinoids in tissues controlling energy homeostasis are altered in obesity, thus contributing to metabolic disorders. Here we evaluate endocannabinoid dysregulation in the small intestine of mice with diet‐induced obesity (DIO) and in peripheral tissues of Zucker and lean rats following food deprivation and re‐feeding.
Nutrition & Metabolism | 2011
Fabiana Piscitelli; Gianfranca Carta; Tiziana Bisogno; Elisabetta Murru; Lina Cordeddu; Kjetil Berge; Sally Tandy; Jeffrey S. Cohn; Mikko Griinari; Sebastiano Banni; Vincenzo Di Marzo
BackgroundOmega-3 polyunsaturated fatty acids (ω-3-PUFA) are known to ameliorate several metabolic risk factors for cardiovascular disease, and an association between elevated peripheral levels of endogenous ligands of cannabinoid receptors (endocannabinoids) and the metabolic syndrome has been reported. We investigated the dose-dependent effects of dietary ω-3-PUFA supplementation, given as krill oil (KO), on metabolic parameters in high fat diet (HFD)-fed mice and, in parallel, on the levels, in inguinal and epididymal adipose tissue (AT), liver, gastrocnemius muscle, kidneys and heart, of: 1) the endocannabinoids, anandamide and 2-arachidonoylglycerol (2-AG), 2) two anandamide congeners which activate PPARα but not cannabinoid receptors, N-oleoylethanolamine and N-palmitoylethanolamine, and 3) the direct biosynthetic precursors of these compounds.MethodsLipids were identified and quantified using liquid chromatography coupled to atmospheric pressure chemical ionization single quadrupole mass spectrometry (LC-APCI-MS) or high resolution ion trap-time of flight mass spectrometry (LC-IT-ToF-MS).ResultsEight-week HFD increased endocannabinoid levels in all tissues except the liver and epididymal AT, and KO reduced anandamide and/or 2-AG levels in all tissues but not in the liver, usually in a dose-dependent manner. Levels of endocannabinoid precursors were also generally down-regulated, indicating that KO affects levels of endocannabinoids in part by reducing the availability of their biosynthetic precursors. Usually smaller effects were found of KO on OEA and PEA levels.ConclusionsOur data suggest that KO may promote therapeutic benefit by reducing endocannabinoid precursor availability and hence endocannabinoid biosynthesis.
European Journal of Endocrinology | 2009
Vincenzo Di Marzo; An Verrijken; Antti Hakkarainen; Stefania Petrosino; Ilse Mertens; Nina Lundbom; Fabiana Piscitelli; Jukka Westerbacka; Aino Soro-Paavonen; Isabel Matias; Luc Van Gaal; Marja-Riitta Taskinen
OBJECTIVE Endocannabinoids (ECs) control metabolism via cannabinoid receptors type 1 (CB1). Their plasma levels are elevated in overweight type 2 diabetes (T2D) and in obese patients, and decrease postprandially in normoweight individuals. We investigated in two different cohorts of nonobese or obese volunteers whether oral glucose in glucose tolerance tests (OGTT) or acute insulin infusion during euglycemic hyperinsulinemic clamp affect plasma EC levels. DESIGN AND METHODS OGTT was performed in ten obese hyperinsulinemic patients (body mass index (BMI)=35.8 kg/m2, fasting insulin=14.83 mU/l), and ten normoweight normoinsulinemic volunteers (BMI=21.9 kg/m2, fasting insulin=7.2 mU/l). Insulin clamp was performed in 19 mostly nonobese men (BMI=25.8 kg/m2) with varying degrees of liver fat and plasma triglycerides (TGs), with (n=7) or without T2D. Plasma levels of ECs (anandamide and 2-arachidonoylglycerol (2-AG)) were measured by liquid chromatography-mass spectrometry, before and 60 and 180 min after OGTT, and before and 240 and 480 min after insulin or saline infusion. RESULTS Oral glucose load decreased anandamide plasma levels to an extent inversely correlated with BMI, waist circumference, subcutaneous fat, fasting insulin and total glucose, and insulin areas under the curve during the OGTT, and nonsignificantly in obese volunteers. Insulin infusion decreased anandamide levels to an extent that weakly, but significantly, correlated negatively with TGs, liver fat and fasting insulin, and positively with high density lipoprotein cholesterol. OGTT decreased 2-AG levels to a lower extent and in a way weakly inversely correlated with fasting insulin. CONCLUSIONS We suggest that insulin reduces EC levels in a way inversely related to anthropometric and metabolic predictors of insulin resistance and dyslipidemia.
PLOS ONE | 2012
Luisa Gatta; Fabiana Piscitelli; Catia Giordano; Serana Boccella; Aron H. Lichtman; Sebatino Maione; Vincenzo Di Marzo
It was suggested that endocannabinoids are metabolized by cyclooxygenase (COX)-2 in the spinal cord of rats with kaolin/λ-carrageenan-induced knee inflammation, and that this mechanism contributes to the analgesic effects of COX-2 inhibitors in this experimental model. We report the development of a specific method for the identification of endocannabinoid COX-2 metabolites, its application to measure the levels of these compounds in tissues, and the finding of prostamide F2α (PMF2α) in mice with knee inflammation. Whereas the levels of spinal endocannabinoids were not significantly altered by kaolin/λ-carrageenan-induced knee inflammation, those of the COX-2 metabolite of AEA, PMF2α, were strongly elevated. The formation of PMF2α was reduced by indomethacin (a non-selective COX inhibitor), NS-398 (a selective COX-2 inhibitor) and SC-560 (a selective COX-1 inhibitor). In healthy mice, spinal application of PMF2α increased the firing of nociceptive (NS) neurons, and correspondingly reduced the threshold of paw withdrawal latency (PWL). These effects were attenuated by the PMF2α receptor antagonist AGN211336, but not by the FP receptor antagonist AL8810. Also prostaglandin F2α increased NS neuron firing and reduced the threshold of PWL in healthy mice, and these effects were antagonized by AL8810, and not by AGN211336. In mice with kaolin/λ-carrageenan-induced knee inflammation, AGN211336, but not AL8810, reduced the inflammation-induced NS neuron firing and reduction of PWL. These findings suggest that inflammation-induced, and prostanoid-mediated, enhancement of dorsal horn NS neuron firing stimulates the production of spinal PMF2α, which in turn contributes to further NS neuron firing and pain transmission by activating specific receptors.
Handbook of experimental pharmacology | 2011
Vincenzo Di Marzo; Fabiana Piscitelli; Raphael Mechoulam
The cannabinoid receptors for Δ(9)-THC, and particularly, the CB(1) receptor, as well as its endogenous ligands, the endocannabinoids anandamide and 2-arachidonoylglycerol, are deeply involved in all aspects of the control of energy balance in mammals. While initially it was believed that this endocannabinoid signaling system would only facilitate energy intake, we now know that perhaps even more important functions of endocannabinoids and CB(1) receptors in this context are to enhance energy storage into the adipose tissue and reduce energy expenditure by influencing both lipid and glucose metabolism. Although normally well controlled by hormones and neuropeptides, both central and peripheral aspects of endocannabinoid regulation of energy balance can become dysregulated and contribute to obesity, dyslipidemia, and type 2 diabetes, thus raising the possibility that CB(1) antagonists might be used for the treatment of these metabolic disorders. On the other hand, evidence is emerging that some nonpsychotropic plant cannabinoids, such as cannabidiol, can be employed to retard β-cell damage in type 1 diabetes. These novel aspects of endocannabinoid research are reviewed in this chapter, with emphasis on the biological effects of plant cannabinoids and endocannabinoid receptor antagonists in diabetes.
Lipids in Health and Disease | 2010
Giovanni Annuzzi; Fabiana Piscitelli; Lucrezia Di Marino; Lidia Patti; Rosalba Giacco; Giuseppina Costabile; Lutgarda Bozzetto; Gabriele Riccardi; Roberta Verde; Stefania Petrosino; Angela A. Rivellese; Vincenzo Di Marzo
BackgroundThe endocannabinoids, anandamide and 2-AG, are produced by adipocytes, where they stimulate lipogenesis via cannabinoid CB1 receptors and are under the negative control of leptin and insulin. Endocannabinoid levels are elevated in the blood of obese individuals and nonobese type 2 diabetes patients. To date, no study has evaluated endocannabinoid levels in subcutaneous adipose tissue (SAT) of subjects with both obesity and type 2 diabetes (OBT2D), characterised by similar adiposity and whole body insulin resistance and lower plasma leptin levels as compared to non-diabetic obese subjects (OB).Design and MethodsThe levels of anandamide and 2-AG, and of the anandamide-related PPARα ligands, oleoylethanolamide (OEA) and palmitoylethanolamide (PEA), in the SAT obtained by abdominal needle biopsy in 10 OBT2D, 11 OB, and 8 non-diabetic normal-weight (NW) subjects, were measured by liquid chromatography-mass spectrometry. All subjects underwent a hyperinsulinaemic euglycaemic clamp.ResultsAs compared to NW, anandamide, OEA and PEA levels in the SAT were 2-4.4-fold elevated (p < 0.05), and 2-AG levels 2.3-fold reduced (p < .05), in OBT2D but not in OB subjects. Anandamide, OEA and PEA correlated positively (p < .05) with SAT leptin mRNA and free fatty acid during hyperinsulinaemic clamp, and negatively with SAT LPL activity and plasma HDL-cholesterol, which were all specifically altered in OBT2D subjects.ConclusionsThe observed alterations emphasize, for the first time in humans, the potential different role and regulation of adipose tissue anandamide (and its congeners) and 2-AG in obesity and type 2 diabetes.
Journal of Molecular Medicine | 2012
Gabriella Aviello; Barbara Romano; Francesca Borrelli; Raffaele Capasso; Laura Gallo; Fabiana Piscitelli; Vincenzo Di Marzo; Angelo A. Izzo
Colon cancer affects millions of individuals in Western countries. Cannabidiol, a safe and non-psychotropic ingredient of Cannabis sativa, exerts pharmacological actions (antioxidant and intestinal antinflammatory) and mechanisms (inhibition of endocannabinoid enzymatic degradation) potentially beneficial for colon carcinogenesis. Thus, we investigated its possible chemopreventive effect in the model of colon cancer induced by azoxymethane (AOM) in mice. AOM treatment was associated with aberrant crypt foci (ACF, preneoplastic lesions), polyps, and tumour formation, up-regulation of phospho-Akt, iNOS and COX-2 and down-regulation of caspase-3. Cannabidiol-reduced ACF, polyps and tumours and counteracted AOM-induced phospho-Akt and caspase-3 changes. In colorectal carcinoma cell lines, cannabidiol protected DNA from oxidative damage, increased endocannabinoid levels and reduced cell proliferation in a CB1-, TRPV1- and PPARγ-antagonists sensitive manner. It is concluded that cannabidiol exerts chemopreventive effect in vivo and reduces cell proliferation through multiple mechanisms.
Diabetes | 2011
Federica Barutta; Fabiana Piscitelli; Silvia Pinach; Graziella Bruno; Roberto Gambino; Maria Pia Rastaldi; Gennaro Salvidio; Vincenzo Di Marzo; Paolo Cavallo Perin; Gabriella Gruden
OBJECTIVE The cannabinoid receptor type 2 (CB2) has protective effects in chronic degenerative diseases. Our aim was to assess the potential relevance of the CB2 receptor in both human and experimental diabetic nephropathy (DN). RESEARCH DESIGN AND METHODS CB2 expression was studied in kidney biopsies from patients with advanced DN, in early experimental diabetes, and in cultured podocytes. Levels of endocannabinoids and related enzymes were measured in the renal cortex from diabetic mice. To assess the functional role of CB2, streptozotocin-induced diabetic mice were treated for 14 weeks with AM1241, a selective CB2 agonist. In these animals, we studied albuminuria, renal function, expression of podocyte proteins (nephrin and zonula occludens-1), and markers of both fibrosis (fibronectin and transforming growth factor-β1) and inflammation (monocyte chemoattractant protein-1 [MCP-1], CC chemokine receptor 2 [CCR2], and monocyte markers). CB2 signaling was assessed in cultured podocytes. RESULTS Podocytes express the CB2 receptor both in vitro and in vivo. CB2 was downregulated in kidney biopsies from patients with advanced DN, and renal levels of the CB2 ligand 2-arachidonoylglycerol were reduced in diabetic mice, suggesting impaired CB2 regulation. In experimental diabetes, AM1241 ameliorated albuminuria, podocyte protein downregulation, and glomerular monocyte infiltration, without affecting early markers of fibrosis. In addition, AM1241 reduced CCR2 expression in both renal cortex and cultured podocytes, suggesting that CB2 activation may interfere with the deleterious effects of MCP-1 signaling. CONCLUSIONS The CB2 receptor is expressed by podocytes, and in experimental diabetes, CB2 activation ameliorates both albuminuria and podocyte protein loss, suggesting a protective effect of signaling through CB2 in DN.