Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Roberta Imperatore is active.

Publication


Featured researches published by Roberta Imperatore.


Nature Medicine | 2012

Neural precursor cells induce cell death of high-grade astrocytomas through stimulation of TRPV1

Kristin Stock; Jitender Kumar; Michael Synowitz; Stefania Petrosino; Roberta Imperatore; Ewan St. John Smith; Peter Wend; Bettina Purfürst; Ulrike A. Nuber; Ulf Gurok; Vitali Matyash; Joo-Hee Wälzlein; Sridhar R Chirasani; Gunnar Dittmar; Benjamin F. Cravatt; Stefan Momma; Gary R. Lewin; Alessia Ligresti; Luciano De Petrocellis; Luigia Cristino; Vincenzo Di Marzo; Helmut Kettenmann; Rainer Glass

Primary astrocytomas of grade 3 or 4 according to the classification system of the World Health Organization (high-grade astrocytomas or HGAs) are preponderant among adults and are almost invariably fatal despite the use of multimodal therapy. Here we show that the juvenile brain has an endogenous defense mechanism against HGAs. Neural precursor cells (NPCs) migrate to HGAs, reduce glioma expansion and prolong survival time by releasing endovanilloids that activate the vanilloid receptor (transient receptor potential vanilloid subfamily member-1 or TRPV1) on HGA cells. TRPV1 is highly expressed in tumor and weakly expressed in tumor-free brain. TRPV1 stimulation triggers tumor cell death through the branch of the endoplasmic reticulum stress pathway that is controlled by activating transcription factor-3 (ATF3). The antitumorigenic response of NPCs is lost with aging. NPC-mediated tumor suppression can be mimicked in the adult brain by systemic administration of the synthetic vanilloid arvanil, suggesting that TRPV1 agonists have potential as new HGA therapeutics.


Cerebral Cortex | 2012

TRPV1-Dependent and -Independent Alterations in the Limbic Cortex of Neuropathic Mice: Impact on Glial Caspases and Pain Perception

Catia Giordano; Luigia Cristino; Livio Luongo; Dario Siniscalco; Stefania Petrosino; Fabiana Piscitelli; Ida Marabese; Luisa Gatta; Francesca Rossi; Roberta Imperatore; Enza Palazzo; Vito de Novellis; Vincenzo Di Marzo; Sabatino Maione

During neuropathic pain, caspases are activated in the limbic cortex. We investigated the role of TRPV1 channels and glial caspases in the mouse prelimbic and infralimbic (PL-IL) cortex after spared nerve injury (SNI). Reverse transcriptase-polymerase chain reaction, western blots, and immunfluorescence showed overexpression of several caspases in the PL-IL cortex 7 days postinjury. Caspase-3 release and upregulation of AMPA receptors in microglia, caspase-1 and IL-1β release in astrocytes, and upregulation of Il-1 receptor-1, TRPV1, and VGluT1 in glutamatergic neurons, were also observed. Of these alterations, only those in astrocytes persisted in SNI Trpv1(-/-) mice. A pan-caspase inhibitor, injected into the PL-IL cortex, reduced mechanical allodynia, this effect being reduced but not abolished in Trpv1(-/-) mice. Single-unit extracellular recordings in vivo following electrical stimulation of basolateral amygdala or application of pressure on the hind paw, showed increased excitatory pyramidal neuron activity in the SNI PL-IL cortex, which also contained higher levels of the endocannabinoid 2-arachidonoylglycerol. Intra-PL-IL cortex injection of mGluR5 and NMDA receptor antagonists and AMPA exacerbated, whereas TRPV1 and AMPA receptor antagonists and a CB(1) agonist inhibited, allodynia. We suggest that SNI triggers both TRPV1-dependent and independent glutamate- and caspase-mediated cross-talk among IL-PL cortex neurons and glia, which either participates or counteracts pain.


Pharmacological Research | 2014

The dual blocker of FAAH/TRPV1 N-arachidonoylserotonin reverses the behavioral despair induced by stress in rats and modulates the HPA-axis

Andrea Navarria; Alessandra Tamburella; Fabio Arturo Iannotti; Vincenzo Micale; Giovanni Camillieri; Lucia Gozzo; Roberta Verde; Roberta Imperatore; Gian Marco Leggio; Filippo Drago; Vincenzo Di Marzo

In recent years, several studies have explored the involvement of the deregulation of the hypothalamus-pituitary-adrenal (HPA) axis in the pathophysiology of stress-related disorders. HPA hyper-activation as a consequence of acute/chronic stress has been found to play a major role in the neurobiological changes that are responsible for the onset of such states. Currently available medications for depression, one of the most relevant stress-related disorders, present several limitations, including a time lag for treatment response and low rates of efficacy. N-Arachidonoylserotonin (AA-5-HT), a dual blocker at fatty acid amide hydrolase (FAAH, the enzyme responsible for the inactivation of the endocannabinoid anandamide) and transient receptor potential vanilloid type-1 channel (TRPV1), produces anxiolytic-like effects in mice. The present study was designed to assess the capability of AA-5-HT to reverse the behavioral despair following exposure to stress in rats and the role of the HPA-axis. Behavioral tasks were performed, and corticosterone and endocannabinoid (anandamide and 2-arachidonoylglycerol) levels were measured in selected brain areas critically involved in the pathophysiology of stress-related disorders (medial PFC and hippocampus) under basal and stress conditions, and in response to treatment with AA-5-HT. Our data show that AA-5-HT reverses the rat behavioral despair in the forced swim test under stress conditions, and this effect is associated with the normalization of the HPA-axis deregulation that follows stress application and only in part with elevation of anandamide levels. Blockade of FAAH and TRPV1 may thus represent a novel target to design novel therapeutic strategies for the treatment of stress-related disorders.


Neuropsychopharmacology | 2016

Orexin-A and Endocannabinoid Activation of the Descending Antinociceptive Pathway Underlies Altered Pain Perception in Leptin Signaling Deficiency

Luigia Cristino; Livio Luongo; Roberta Imperatore; Serena Boccella; Thorsten Becker; Giovanna Morello; Fabiana Piscitelli; Giuseppe Busetto; Sabatino Maione; Vincenzo Di Marzo

Pain perception can become altered in individuals with eating disorders and obesity for reasons that have not been fully elucidated. We show that leptin deficiency in ob/ob mice, or leptin insensitivity in the arcuate nucleus of the hypothalamus in mice with high-fat diet (HFD)-induced obesity, are accompanied by elevated orexin-A (OX-A) levels and orexin receptor-1 (OX1-R)-dependent elevation of the levels of the endocannabinoid, 2-arachidonoylglycerol (2-AG), in the ventrolateral periaqueductal gray (vlPAG). In ob/ob mice, these alterations result in the following: (i) increased excitability of OX1-R-expressing vlPAG output neurons and subsequent increased OFF and decreased ON cell activity in the rostral ventromedial medulla, as assessed by patch clamp and in vivo electrophysiology; and (ii) analgesia, in both healthy and neuropathic mice. In HFD mice, instead, analgesia is only unmasked following leptin receptor antagonism. We propose that OX-A/endocannabinoid cross talk in the descending antinociceptive pathway might partly underlie increased pain thresholds in conditions associated with impaired leptin signaling.


Journal of Neurochemistry | 2015

Genetic deletion of monoacylglycerol lipase leads to impaired cannabinoid receptor CB1R signaling and anxiety‐like behavior

Roberta Imperatore; Giovanna Morello; Livio Luongo; Ulrike Taschler; Rosaria Romano; Danilo De Gregorio; Carmela Belardo; Sabatino Maione; Vincenzo Di Marzo; Luigia Cristino

Endocannabinoids (eCB) are key regulators of excitatory/inhibitory neurotransmission at cannabinoid‐1‐receptor (CB1R)‐expressing axon terminals. The most abundant eCB in the brain, that is 2‐arachidonoylglycerol (2‐AG), is hydrolyzed by the enzyme monoacylglycerol lipase (MAGL), whose chronic inhibition in the brain was reported to cause CB1R desensitization. We employed the MAGL knock‐out mouse (MAGL−/−), a genetic model of congenital and sustained elevation of 2‐AG levels in the brain, to provide morphological and biochemical evidence for β‐arrestin2‐mediated CB1R desensitization in brain regions involved in the control of emotional states, that is, the prefrontal cortex (PFC), amygdala, hippocampus and cerebellar cortex. We found a widespread CB1R/β‐arrestin2 co‐expression in the mPFC, amygdala and hippocampus accompanied by impairment of extracellular signal‐regulated kinase signaling and elevation of vesicular glutamate transporter (VGluT1) at CB1R‐positive excitatory terminals in the mPFC, or vesicular GABA transporter (VGAT) at CB1R‐positive inhibitory terminals in the amygdala and hippocampus. The impairment of CB1R signaling in MAGL−/− mice was also accompanied by enhanced excitatory drive in the basolateral amygdala (BLA)‐mPFC circuit, with subsequent elevation of glutamate release to the mPFC and anxiety‐like and obsessive‐compulsive behaviors, as assessed by the light/dark box and marble burying tests, respectively. Collectively, these data provide evidence for a β‐arrestin2‐mediated desensitization of CB1R in MAGL−/− mice, with impact on the synaptic plasticity of brain circuits involved in emotional functions.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Orexin-A represses satiety-inducing POMC neurons and contributes to obesity via stimulation of endocannabinoid signaling

Giovanna Morello; Roberta Imperatore; Letizia Palomba; Carmine Finelli; Giuseppe Labruna; Fabrizio Pasanisi; Lucia Sacchetti; Lorena Buono; Fabiana Piscitelli; Pierangelo Orlando; Vincenzo Di Marzo; Luigia Cristino

Significance Both evolutionarily and functionally, wakefulness requires, and is accompanied by, food search and intake for survival. From the molecular perspective, the neuropeptide orexin-A (OX-A) promotes wakefulness, α–melanocyte-stimulating hormone (α-MSH) promotes satiety, and the endocannabinoid 2-arachidonoylglycerol (2-AG) promotes appetite. In the cerebrospinal fluid of obese mice and in the plasma of human obese subjects, we found an inverse correlation between OX-A and α-MSH levels, which led us to uncover the role of OX-A in promoting hyperphagia by enhancing 2-AG levels and subsequently activating CB1 receptor-mediated down-regulation of POMC synthesis and α-MSH release. Pharmacological inhibition of OX-A receptor type 1 counteracted the impairment of α-MSH signaling and the associated hyperphagia, obesity, and steatosis, thus providing a potential therapy for these pathological conditions. In the hypothalamic arcuate nucleus (ARC), proopiomelanocortin (POMC) neurons and the POMC-derived peptide α–melanocyte-stimulating hormone (α-MSH) promote satiety. POMC neurons receive orexin-A (OX-A)-expressing inputs and express both OX-A receptor type 1 (OX-1R) and cannabinoid receptor type 1 (CB1R) on the plasma membrane. OX-A is crucial for the control of wakefulness and energy homeostasis and promotes, in OX-1R–expressing cells, the biosynthesis of the endogenous counterpart of marijuanas psychotropic and appetite-inducing component Δ9-tetrahydrocannabinol, i.e., the endocannabinoid 2-arachidonoylglycerol (2-AG), which acts at CB1R. We report that OX-A/OX-1R signaling at POMC neurons promotes 2-AG biosynthesis, hyperphagia, and weight gain by blunting α-MSH production via CB1R-induced and extracellular-signal-regulated kinase 1/2 activation- and STAT3 inhibition-mediated suppression of Pomc gene transcription. Because the systemic pharmacological blockade of OX-1R by SB334867 caused anorectic effects by reducing food intake and body weight, our results unravel a previously unsuspected role for OX-A in endocannabinoid-mediated promotion of appetite by combining OX-induced alertness with food seeking. Notably, increased OX-A trafficking was found in the fibers projecting to the ARC of obese mice (ob/ob and high-fat diet fed) concurrently with elevation of OX-A release in the cerebrospinal fluid and blood of mice. Furthermore, a negative correlation between OX-A and α-MSH serum levels was found in obese mice as well as in human obese subjects (body mass index > 40), in combination with elevation of alanine aminotransferase and γ-glutamyl transferase, two markers of fatty liver disease. These alterations were counteracted by antagonism of OX-1R, thus providing the basis for a therapeutic treatment of these diseases.


British Journal of Pharmacology | 2012

A re-evaluation of 9-HODE activity at TRPV1 channels in comparison with anandamide: enantioselectivity and effects at other TRP channels and in sensory neurons

Luciano De Petrocellis; Aniello Schiano Moriello; Roberta Imperatore; Luigia Cristino; Katarzyna Starowicz; Vincenzo Di Marzo

Two oxidation products of linoleic acid, 9‐ and 13‐hydroxy‐octadecadienoic acids (HODEs), have recently been suggested to act as endovanilloids, that is, endogenous agonists of transient receptor potential vanilloid‐1 (TRPV1) channels, thereby contributing to inflammatory hyperalgesia in rats. However, HODE activity at rat TRPV1 in comparison with the best established endovanilloid, anandamide, and its enantioselectivity and selectivity towards other TRP channels that are also abundant in sensory neurons have never been investigated.


Journal of Biological Chemistry | 2015

Negative Regulation of Leptin-induced Reactive Oxygen Species (ROS) Formation by Cannabinoid CB1 Receptor Activation in Hypothalamic Neurons

Letizia Palomba; Cristoforo Silvestri; Roberta Imperatore; Giovanna Morello; Fabiana Piscitelli; Andrea Martella; Luigia Cristino; Vincenzo Di Marzo

Background: In hypothalamic neurons, leptin induces ROS production via PPAR-γ inhibition. Results: CB1 agonism prevents leptin-induced ROS accumulation by reversing PPAR-γ and catalase inhibition. Inhibition of endocannabinoid inactivation also counteracts leptin effects. Conclusion: CB1 inhibits effects of leptin that underlie part of its anorexic actions. Significance: During conditions of increased endocannabinoid tone CB1 might reduce leptin activity in the hypothalamus. The adipocyte-derived, anorectic hormone leptin was recently shown to owe part of its regulatory effects on appetite-regulating hypothalamic neuropeptides to the elevation of reactive oxygen species (ROS) levels in arcuate nucleus (ARC) neurons. Leptin is also known to exert a negative regulation on hypothalamic endocannabinoid levels and hence on cannabinoid CB1 receptor activity. Here we investigated the possibility of a negative regulation by CB1 receptors of leptin-mediated ROS formation in the ARC. Through pharmacological and molecular biology experiments we report data showing that leptin-induced ROS accumulation is 1) blunted by arachidonyl-2′-chloroethylamide (ACEA) in a CB1-dependent manner in both the mouse hypothalamic cell line mHypoE-N41 and ARC neuron primary cultures, 2) likewise blocked by a peroxisome proliferator-activated receptor-γ (PPAR-γ) agonist, troglitazone, in a manner inhibited by T0070907, a PPAR-γ antagonist that also inhibited the ACEA effect on leptin, 3) blunted under conditions of increased endocannabinoid tone due to either pharmacological or genetic inhibition of endocannabinoid degradation in mHypoE-N41 and primary ARC neuronal cultures from MAGL−/− mice, respectively, and 4) associated with reduction of both PPAR-γ and catalase activity, which are reversed by both ACEA and troglitazone. We conclude that CB1 activation reverses leptin-induced ROS formation and hence possibly some of the ROS-mediated effects of the hormone by preventing PPAR-γ inhibition by leptin, with subsequent increase of catalase activity. This mechanism might underlie in part CB1 orexigenic actions under physiopathological conditions accompanied by elevated hypothalamic endocannabinoid levels.


Journal of Biomedical Materials Research Part A | 2015

Imidazole-stabilized gold nanoparticles induce neuronal apoptosis: an in vitro and in vivo study.

Roberta Imperatore; Gianfranco Carotenuto; Maria Antonietta Di Grazia; Ida Ferrandino; Letizia Palomba; Raffaella Mariotti; Emilia Vitale; Sergio De Nicola; Angela Longo; Luigia Cristino

Gold nanoparticles are increasingly being employed in innovative biological applications thanks to their advantages of material- and size-dependent physics and chemical interactions with the cellular systems. On the other hand, growing concern has emerged on the toxicity which would render gold-based nanoparticles harmful to cell cultures, animals, and humans. Emerging attention is focused on the interaction of gold nanoparticles with nervous system, especially regarding the ability to overcome the blood-brain barrier (BBB) which represents the major impediment to the delivery of therapeutics into the brain. We synthesized highly stable 2-mercapto-1-methylimidazole-stabilized gold-nanoparticles (AuNPs)-mmi to investigate their entry, accumulation, and toxicity in vitro (SH-SY5Y human neuroblastoma cells) and in vivo (brain of C57BL/6 mice) through optical and electron microscopy. After incubation in the cell culture medium at the lowest dose of 0.1 mg/mL the (AuNPs)-mmi nanoparticles were found compacted and recruited into endosome/lysosomes (1 h) before their fusion (2 h) and the onset of neuronal death by apoptosis (4 h) as proved by terminal-transferase-mediated dUTP nick end labeling assay and caspase-3 immunoreactivity. The ability of (AuNPs)-mmi to cross the BBB was assessed by injection in the caudal vein of C57BL/6 mice. Among different brain regions, the nanoparticles were found in the CaudatoPutamen area, mainly in the striatal neurons 4 h after injection. These neurons showed the typical hallmarks of apoptosis. Our findings provide, for the first time, the dynamic of 2-mercapto-1-methylimidazole nanogold uptake. The molecular mechanism which underlies the nanogold-driven apoptotic event is analyzed and discussed in order to take into account when designing nanomaterials to interface with biological structures.


Pharmacological Research | 2017

Pharmacological inhibition of MAGL attenuates experimental colon carcinogenesis

Ester Pagano; Francesca Borrelli; Pierangelo Orlando; Barbara Romano; Martina Monti; Lucia Morbidelli; Gabriella Aviello; Roberta Imperatore; Raffaele Capasso; Fabiana Piscitelli; Lorena Buono; Vincenzo Di Marzo; Angelo A. Izzo

Graphical abstract Figure. No Caption available. ABSTRACT Colorectal cancer (CRC) is a major health problem in Western countries. The endocannabinoid 2‐arachidonoyl‐glycerol (2‐AG) exerts antiproliferative actions in a number of tumoral cell lines, including CRC cells. Monoacylglycerol lipase (MAGL), a serine hydrolase that inactivates 2‐AG, is highly expressed in aggressive human cancer cells. Here, we investigated the role of MAGL in experimental colon carcinogenesis. The role of MAGL was assessed in vivo by using the xenograft and the azoxymethane models of colon carcinogenesis; MAGL expression was evaluated by RT‐PCR and immunohistochemistry; 2‐AG levels were measured by liquid chromatography mass spectrometry; angiogenesis was evaluated in tumor tissues [by microvessel counting and by investigating the expression of vascular endothelial growth factor (VEGF) and fibroblast growth factor‐2 (FGF‐2) proteins] as well as in human umbilical vein endothelial cells (HUVEC); cyclin D1 was evaluated by RT‐PCR. MAGL and 2‐AG were strongly expressed in tumor tissues. The MAGL inhibitor URB602 reduced xenograft tumor volume, this effect being associated to down‐regulation of VEGF and FGF‐2, reduction in the number of vessels and down‐regulation of cyclin D1. In HUVEC, URB602 exerted a direct antiangiogenic effect by inhibiting FGF‐2 induced proliferation and migration, and by modulating pro/anti‐angiogenic agents. In experiments aiming at investigating the role of MAGL in chemoprevention, URB602 attenuated azoxymethane‐induced preneoplastic lesions, polyps and tumors. MAGL, possibly through modulation of angiogenesis, plays a pivotal role in experimental colon carcinogenesis. Pharmacological inhibition of MAGL could represent an innovative therapeutic approach to reduce colorectal tumor progression.

Collaboration


Dive into the Roberta Imperatore's collaboration.

Top Co-Authors

Avatar

Luigia Cristino

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Livio Luongo

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar

Sabatino Maione

Seconda Università degli Studi di Napoli

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lorena Buono

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge