Fabiano Oyafuso
California Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fabiano Oyafuso.
Physical Review B | 2004
Seungwon Lee; Fabiano Oyafuso; Paul von Allmen; Gerhard Klimeck
The modeling of finite-extent semiconductor nanostructures that are embedded in a host material requires a proper boundary treatment for a finite simulation domain. For the study of a self-assembled InAs dot embedded in GaAs, three kinds of boundary conditions are examined within the empirical tight-binding model: (i) the periodic boundary condition, (ii) raising the orbital energies of surface atoms, and (iii) raising the energies of dangling bonds at the surface. The periodic boundary condition requires a smooth boundary and consequently a larger GaAs buffer than the two nonperiodic boundary conditions. Between the nonperiodic conditions, the dangling-bond energy shift is more numerically efficient than the orbital-energy shift, in terms of the elimination of nonphysical surface states in the energy region of interest for interior states. A dangling-bond energy shift larger than 5 eV efficiently eliminates all of the surface states and leads to interior states that are highly insensitive to the choice of the energy shift.
Applied Physics Letters | 2004
Timothy B. Boykin; Gerhard Klimeck; M. A. Eriksson; Mark Friesen; S. N. Coppersmith; Paul von Allmen; Fabiano Oyafuso; Seungwon Lee
A theory based on localized-orbital approaches is developed to describe the valley splitting observed in silicon quantum wells. The theory is appropriate in the limit of low electron density and relevant for quantum computing architectures. The valley splitting is computed for realistic devices using the quantitative nanoelectronic modeling tool NEMO. A simple, analytically solvable tight-binding model reproduces the behavior of the splitting in the NEMO results and yields much physical insight. The splitting is in general nonzero even in the absence of electric field in contrast to previous works. The splitting in a square well oscillates as a function of S, the number of layers in the quantum well, with a period that is determined by the location of the valley minimum in the Brillouin zone. The envelope of the splitting decays as S−3. The feasibility of observing such oscillations experimentally in Si/SiGe heterostructures is discussed.
Physical Review B | 2004
Seungwon Lee; Olga L. Lazarenkova; Paul von Allmen; Fabiano Oyafuso; Gerhard Klimeck
The effect of wetting layers on the strain and electronic structure of InAs self-assembled quantum dots grown on GaAs is investigated with an atomistic valence-force-field model and an empirical tight-binding model. By comparing a dot with and without a wetting layer, we find that the inclusion of the wetting layer weakens the strain inside the dot by only 1% relative change, while it reduces the energy gap between a confined electron and hole level by as much as 10%. The small change in the strain distribution indicates that strain relaxes only little through the thin wetting layer. The large reduction of the energy gap is attributed to the increase of the confining-potential width rather than the change of the potential height. First-order perturbation calculations or, alternatively, the addition of an InAs disk below the quantum dot confirm this conclusion. The effect of the wetting layer on the wave function is qualitatively different for the weakly confined electron state and the strongly confined hole state. The electron wave function shifts from the buffer to the wetting layer, while the hole shifts from the dot to the wetting layer.
Applied Physics Letters | 2004
Olga L. Lazarenkova; Paul von Allmen; Fabiano Oyafuso; Seungwon Lee; Gerhard Klimeck
Anharmonicity of the interatomic potential is taken into account for the quantitative simulation of the conduction and valence band offsets for strained semiconductor heterostructures. The anharmonicity leads to a weaker compressive hydrostatic strain than that obtained with the commonly used quasiharmonic approximation of the Keating model. Compared to experiment, inclusion of the anharmonicity in the simulation of strained InAs∕GaAs nanostructures results in an improvement of the electron band offset computed on an atomistic level by up to 100meV.
Geophysical Research Letters | 2017
Cheng Li; Andrew P. Ingersoll; Michael A. Janssen; Steven M. Levin; S. J. Bolton; Virgil Adumitroaie; Michael E. D. Allison; J. K. Arballo; Amadeo Bellotti; Shannon T. Brown; Shawn P. Ewald; Laura Jewell; Sidharth Misra; Glenn S. Orton; Fabiano Oyafuso; Paul G. Steffes; Ross Williamson
The Juno microwave radiometer measured the thermal emission from Jupiters atmosphere from the cloud tops at about 1 bar to as deep as a hundred bars of pressure during its first flyby over Jupiter (PJ1). The nadir brightness temperatures show that the Equatorial Zone is likely to be an ideal adiabat, which allows a determination of the deep ammonia abundance in the range 362^(+33)_(-33) ppm. The combination of Markov chain Monte Carlo method and Tikhonov regularization is studied to invert Jupiters global ammonia distribution assuming a prescribed temperature profile. The result shows (1) that ammonia is depleted globally down to 50–60 bars except within a few degrees of the equator, (2) the North Equatorial Belt is more depleted in ammonia than elsewhere, and (3) the ammonia concentration shows a slight inversion starting from about 7 bars to 2 bars. These results are robust regardless of the choice of water abundance.
Vlsi Design | 1998
Fabiano Oyafuso; P. von Allmen; M. Grupen; K. Hess
A self-consistent eight band k.p calculation, which takes into account strain and includes Hartree, exchange, and correlation terms (determined from a local density approximation) is incorporated into a QW laser simulator (MINILASE-II). The computation is performed within the envelope function approximation for a superlattice, in which all spatially varying terms of the k.p Hamiltonian, including the exchange and correlation energies are expanded in plane waves. The k.p eigenvalue equation, and Poissons equation are solved iteratively until self-consistency is attained. Results from the k.p calculation are exported to MINILASE-II via a density of states and an energy dependent optical matrix element factor, renormalized by a Coulomb enhancement factor to account for electron-hole attraction. Results are presented for the gain spectrum and modulation response for a Ga0.8 In0.2 As/Al0.1 Ga0.9 As quantum well laser with and without the inclusion of the Coulomb enhancement factor.
Journal of Applied Physics | 2005
Timothy B. Boykin; Gerhard Klimeck; Paul von Allmen; Seungwon Lee; Fabiano Oyafuso
The valley splitting (energy difference between the states of the lowest doublet) in strained silicon quantum wells with a V-shaped potential is calculated variationally using a two-band tight-binding model. The approximation is valid for a moderately long (approximately 5.5–13.5nm) quantum well with a V-shaped potential which can be produced by a realistic delta-doping on the order of nd≈1012cm−2. The splitting versus applied field (steepness of the V-shaped potential) curves show interesting behavior: a single minimum and for some doublets, a parity reversal as the field is increased. These characteristics are explained through an analysis of the variational wave function and energy functional.
Journal of Computational Electronics | 2002
Fabiano Oyafuso; Gerhard Klimeck; R. Chris Bowen; Timothy B. Boykin
The broadening of the conduction and valence band edges due to compositional disorder in alloyed materials of finite extent is studied using an sp3s* tight binding model. Two sources of broadening due to configuration and concentration disorder are identified. The concentrational disorder dominates for systems up to at least one million atoms and depends on problem size through an inverse square root law. Significant differences (over 12 meV) in band edge energies are seen depending on choice of granularity of alloy clusters.
Journal of Applied Physics | 2005
Seungwon Lee; Paul von Allmen; Fabiano Oyafuso; Gerhard Klimeck; K. Birgitta Whaley
The effect of electron-nuclear spin interactions on qubit operations is investigated for a qubit represented by the spin of an electron localized in an InGaAs self-assembled quantum dot. The localized electron wave function is evaluated within the atomistic tight-binding model. The electron Zeeman splitting induced by the electron-nuclear spin interaction is estimated in the presence of an inhomogeneous environment characterized by a random nuclear spin configuration, by the dot-size distribution, alloy disorder, and interface disorder. Due to these inhomogeneities, the electron Zeeman splitting varies from one qubit to another by the order of 10−6, 10−6, 10−7, and 10−9eV, respectively. Such fluctuations cause errors in exchange operations due to the inequality of the Zeeman splitting between two qubits. However, the error can be made lower than the quantum error threshold if an exchange energy larger than 10−4eV is used for the operation. This result shows that the electron-nuclear spin interaction does ...
Geophysical Research Letters | 2017
Andrew P. Ingersoll; Virgil Adumitroaie; Michael E. D. Allison; Sushil K. Atreya; Amadeo Bellotti; S. J. Bolton; Shannon T. Brown; Samuel Gulkis; Michael A. Janssen; Steven M. Levin; Cheng Li; Liming Li; Jonathan I. Lunine; Glenn S. Orton; Fabiano Oyafuso; Paul G. Steffes
The latitude-altitude map of ammonia mixing ratio shows an ammonia-rich zone at 0-5°N, with mixing ratios of 320-340 ppm, extending from 40-60 bars up to the ammonia cloud base at 0.7 bars. Ammonia-poor air occupies a belt from 5-20°N. We argue that downdrafts as well as updrafts are needed in the 0-5°N zone to balance the upward ammonia flux. Outside the 0-20°N region, the belt-zone signature is weaker. At latitudes out to ±40°, there is an ammonia-rich layer from cloud base down to 2 bars which we argue is caused by falling precipitation. Below, there is an ammonia-poor layer with a minimum at 6 bars. Unanswered questions include how the ammonia-poor layer is maintained, why the belt-zone structure is barely evident in the ammonia distribution outside 0-20°N, and how the internal heat is transported through the ammonia-poor layer to the ammonia cloud base.