Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fabiele Baldino Russo is active.

Publication


Featured researches published by Fabiele Baldino Russo.


Nature | 2016

The Brazilian Zika virus strain causes birth defects in experimental models

Fernanda R. Cugola; Isabella Rodrigues Fernandes; Fabiele Baldino Russo; Beatriz C. Freitas; João Leonardo Rodrigues Mendonça Dias; Katia P. Guimarães; Cecília Benazzato; Nathalia Almeida; Graciela Conceição Pignatari; Sarah Romero; Carolina Manganeli Polonio; Isabela Cunha; Carla Longo de Freitas; Wesley Nogueira Brandão; Cristiano Rossato; David G. Andrade; Daniele de Paula Faria; Alexandre Teles Garcez; Carlos A. Buchpigel; Carla Torres Braconi; Érica A. Mendes; Amadou A. Sall; Paolo Marinho de Andrade Zanotto; Jean Pierre Schatzmann Peron; Alysson R. Muotri; Patricia Cristina Baleeiro Beltrão-Braga

Summary Zika virus (ZIKV) is an arbovirus belonging to the genus Flavivirus (Family Flaviviridae) and was first described in 1947 in Uganda following blood analyses of sentinel Rhesus monkeys1. Until the 20th century, the African and Asian lineages of the virus did not cause meaningful infections in humans. However, in 2007, vectored by Aedes aegypti mosquitoes, ZIKV caused the first noteworthy epidemic on the island of Yap in Micronesia2. Patients experienced fever, skin rash, arthralgia and conjunctivitis2. From 2013 to 2015, the Asian lineage of the virus caused further massive outbreaks in New Caledonia and French Polynesia. In 2013, ZIKV reached Brazil, later spreading to other countries in South and Central America3. In Brazil, the virus has been linked to congenital malformations, including microcephaly and other severe neurological diseases, such as Guillain-Barré syndrome4,5. Despite clinical evidence, direct experimental proof showing that the Brazilian ZIKV (ZIKVBR) strain causes birth defects remains missing6. Here we demonstrate that the ZIKVBR infects fetuses, causing intra-uterine growth restriction (IUGR), including signs of microcephaly in mice. Moreover, the virus infects human cortical progenitor cells, leading to an increase in cell death. Finally, we observed that the infection of human brain organoids resulted in a reduction of proliferative zones and disrupted cortical layers. These results indicate that ZIKVBR crosses the placenta and causes microcephaly by targeting cortical progenitor cells, inducing cell death by apoptosis and autophagy, impairing neurodevelopment. Our data reinforce the growing body of evidence linking the ZIKVBR outbreak to the alarming number of cases of congenital brain malformations. Our model can be used to determine the efficiency of therapeutic approaches to counteracting the harmful impact of ZIKVBR in human neurodevelopment.


World journal of transplantation | 2015

Induced pluripotent stem cells for modeling neurological disorders

Fabiele Baldino Russo; Fernanda R. Cugola; Isabella Rodrigues Fernandes; Graciela Conceição Pignatari; Patricia Cristina Baleeiro Beltrão-Braga

Several diseases have been successfully modeled since the development of induced pluripotent stem cell (iPSC) technology in 2006. Since then, methods for increased reprogramming efficiency and cell culture maintenance have been optimized and many protocols for differentiating stem cell lines have been successfully developed, allowing the generation of several cellular subtypes in vitro. Gene editing technologies have also greatly advanced lately, enhancing disease-specific phenotypes by creating isogenic cell lines, allowing mutations to be corrected in affected samples or inserted in control lines. Neurological disorders have benefited the most from iPSC-disease modeling for its capability for generating disease-relevant cell types in vitro from the central nervous system, such as neurons and glial cells, otherwise only available from post-mortem samples. Patient-specific iPSC-derived neural cells can recapitulate the phenotypes of these diseases and therefore, considerably enrich our understanding of pathogenesis, disease mechanism and facilitate the development of drug screening platforms for novel therapeutic targets. Here, we review the accomplishments and the current progress in human neurological disorders by using iPSC modeling for Alzheimers disease, Parkinsons disease, Huntingtons disease, spinal muscular atrophy, amyotrophic lateral sclerosis, duchenne muscular dystrophy, schizophrenia and autism spectrum disorders, which include Timothy syndrome, Fragile X syndrome, Angelman syndrome, Prader-Willi syndrome, Phelan-McDermid, Rett syndrome as well as Nonsyndromic Autism.


Cytometry Part A | 2013

In-a-Dish: Induced Pluripotent Stem Cells as a Novel Model for Human Diseases

Patricia Cristina Baleeiro Beltrão-Braga; Graciela Conceição Pignatari; Fabiele Baldino Russo; Isabella Rodrigues Fernandes; Alysson R. Muotri

Human pluripotent stem cells bring promise in regenerative medicine due to their self‐renewing ability and the potential to become any cell type in the body. Moreover, pluripotent stem cells can produce specialized cell types that are affected in certain diseases, generating a new way to study cellular and molecular mechanisms involved in the disease pathology under the controlled conditions of a scientific laboratory. Thus, induced pluripotent stem cells (iPSC) are already being used to gain insights into the biological mechanisms of several human disorders. Here we review the use of iPSC as a novel tool for disease modeling in the lab.


Cellular Microbiology | 2017

Zika infection and the development of neurological defects

Fabiele Baldino Russo; Patricia Jungmann; Patricia Cristina Baleeiro Beltrão-Braga

Starting with the outbreak in Brazil, Zika virus (ZIKV) infection has been correlated with severe syndromes such as congenital Zika syndrome and Guillain‐Barré syndrome. Here, we review the status of Zika virus pathogenesis in the central nervous system (CNS). One of the main concerns about ZIKV exposure during pregnancy is abnormal brain development, which results in microcephaly in newborns. Recent advances in in vitro research show that ZIKV can infect and obliterate cells from the CNS, such as progenitors, neurons, and glial cells. Neural progenitor cells seem to be the main target of the virus, with infection leading to less cell migration, neurogenesis impairment, cell death and, consequently, microcephaly in newborns. The downsizing of the brain can be directly associated with defective development of the cortical layer. In addition, in vivo investigations in mice reveal that ZIKV can cross the placenta and migrate to fetuses, but with a significant neurotropism, which results in brain damage for the pups. Another finding shows that hydrocephaly is an additional consequence of ZIKV infection, being detected during embryonic and fetal development in mouse, as well as after birth in humans. In spite of the advances in ZIKV research in the last year, the mechanisms underlying ZIKV infection in the CNS require further investigation particularly as there are currently no treatments or vaccines against ZIKV infection.


Scientific Reports | 2018

Blocking Zika virus vertical transmission

Pinar Mesci; Angela Macia; Spencer M. Moore; Sergey A. Shiryaev; Antonella Pinto; Chun-Teng Huang; Leon Tejwani; Isabella Rodrigues Fernandes; Nicole A. Suarez; Matthew J. Kolar; Sandro Montefusco; Scott Rosenberg; Roberto H. Herai; Fernanda R. Cugola; Fabiele Baldino Russo; Nicholas Sheets; Alan Saghatelian; Sujan Shresta; Jeremiah D. Momper; Jair L. Siqueira-Neto; Kevin D. Corbett; Patricia Cristina Baleeiro Beltrão-Braga; Alexey Terskikh; Alysson R. Muotri

The outbreak of the Zika virus (ZIKV) has been associated with increased incidence of congenital malformations. Although recent efforts have focused on vaccine development, treatments for infected individuals are needed urgently. Sofosbuvir (SOF), an FDA-approved nucleotide analog inhibitor of the Hepatitis C (HCV) RNA-dependent RNA polymerase (RdRp) was recently shown to be protective against ZIKV both in vitro and in vivo. Here, we show that SOF protected human neural progenitor cells (NPC) and 3D neurospheres from ZIKV infection-mediated cell death and importantly restored the antiviral immune response in NPCs. In vivo, SOF treatment post-infection (p.i.) decreased viral burden in an immunodeficient mouse model. Finally, we show for the first time that acute SOF treatment of pregnant dams p.i. was well-tolerated and prevented vertical transmission of the virus to the fetus. Taken together, our data confirmed SOF-mediated sparing of human neural cell types from ZIKV-mediated cell death in vitro and reduced viral burden in vivo in animal models of chronic infection and vertical transmission, strengthening the growing body of evidence for SOF anti-ZIKV activity.


Microscopy Research and Technique | 2012

Mice embryology: a microscopic overview.

Maria Letícia Baptista Salvadori; Thais Borges Lessa; Fabiele Baldino Russo; Renata Avancini Fernandes; José Roberto Kfoury; Patrícia Cristina Baleeiro Beltrão Braga; Maria Angélica Miglino

In this work, we studied the embryology of mice of 12, 14, and 18 days of gestation by gross observation, light microscopy, and scanning electron microscopy. Grossly, the embryos of 12 days were observed in C‐shaped region of the brain, eye pigmentation of the retina, first, second, and third pharyngeal arches gill pit nasal region on the fourth ventricle brain, cervical curvature, heart, liver, limb bud thoracic, spinal cord, tail, umbilical cord, and place of the mesonephric ridge. Microscopically, the liver, cardiovascular system and spinal cord were observed. In the embryo of 14 days, we observed structures that make up the liver and heart. At 18 days of gestation fetuses, it was noted the presence of eyes, mouth, and nose in the cephalic region, chest and pelvic region with the presence of well‐developed limbs, umbilical cord, and placenta. Scanning electron microscopy in 18 days of gestation fetuses evidenced head, eyes closed eyelids, nose, vibrissae, forelimb, heart, lung, kidney, liver, small bowel, diaphragm, and part of the spine. The results obtained in this work describe the internal and external morphology of mice, provided by an integration of techniques and review of the morphological knowledge of the embryonic development of this species, as this animal is of great importance to scientific studies. Microsc. Res. Tech. 2012.


Biological Psychiatry | 2017

Modeling the interplay between neurons and astrocytes in autism using human induced pluripotent stem cells

Fabiele Baldino Russo; Beatriz C. Freitas; Graciela Conceição Pignatari; Isabella Rodrigues Fernandes; Jonathan Sebat; Alysson R. Muotri; Patricia Cristina Baleeiro Beltrão-Braga

BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder with unclear etiology and imprecise genetic causes. The main goal of this work was to investigate neuronal connectivity and the interplay between neurons and astrocytes from individuals with nonsyndromic ASD using induced pluripotent stem cells. METHODS Induced pluripotent stem cells were derived from a clinically well-characterized cohort of three individuals with nonsyndromic ASD sharing common behaviors and three control subjects, two clones each. We generated mixed neural cultures analyzing synaptogenesis and neuronal activity using a multielectrode array platform. Furthermore, using an enriched astrocyte population, we investigated their role in neuronal maintenance. RESULTS ASD-derived neurons had a significant decrease in synaptic gene expression and protein levels, glutamate neurotransmitter release, and, consequently, reduced spontaneous firing rate. Based on co-culture experiments, we observed that ASD-derived astrocytes interfered with proper neuronal development. In contrast, control-derived astrocytes rescued the morphological neuronal phenotype and synaptogenesis defects from ASD neuronal co-cultures. Furthermore, after identifying interleukin-6 secretion from astrocytes in individuals with ASD as a possible culprit for neural defects, we were able to increase synaptogenesis by blocking interleukin-6 levels. CONCLUSIONS Our findings reveal the contribution of astrocytes to neuronal phenotype and confirm previous studies linking interleukin-6 and autism, suggesting potential novel therapeutic pathways for a subtype of individuals with ASD. This is the first report demonstrating that glial dysfunctions could contribute to nonsyndromic autism pathophysiology using induced pluripotent stem cells modeling disease technology.


Cell and Tissue Research | 2018

Autism spectrum disorders and disease modeling using stem cells

Anita Brito; Fabiele Baldino Russo; Alysson R. Muotri; Patricia Cristina Baleeiro Beltrão-Braga

Autism spectrum disorders (ASD) represent a variety of disorders characterized as complex lifelong neurodevelopment disabilities, which may affect the ability of communication and socialization, including typical comportments like repetitive and stereotyped behavior. Other comorbidities are usually present, such as echolalia, hypotonia, intellectual disability and difficulties in processing figured speech. Furthermore, some ASD individuals may present certain abilities, such as eidetic memory, outstanding musical or painting talents and special mathematical skills, among others. Considering the variability of the clinical symptoms, one autistic individual can be severely affected in communication while others can speak perfectly, sometimes having a vocabulary above average in early childhood. The same variability can be seen in other clinical symptoms, thus the “spectrum” can vary from severe to mild. Induced pluripotent stem cell technology has been used to model several neurological diseases, including syndromic and non-syndromic autism. We discuss how modeling the central nervous system cells in a dish may help to reach a better understanding of ASD pathology and variability, as well as personalize their treatment.


Cytotechnology | 2016

Fibroblast sources: Where can we get them?

Isabella Rodrigues Fernandes; Fabiele Baldino Russo; Graciela Conceição Pignatari; M. M. Evangelinellis; S. Tavolari; Alysson R. Muotri; Patricia Cristina Baleeiro Beltrão-Braga

Fibroblasts are cells widely used in cell culture, both for transient primary cell culture or permanent as transformed cell lines. Lately, fibroblasts become cell sources for use in disease modeling after cell reprogramming because it is easily accessible in the body. Fibroblasts in patients will maintain all genetic background during reprogramming into induced pluripotent stem cells. In spite of their large use, fibroblasts are obtained after an invasive procedure, a superficial punch skin biopsy, collected under patient’s local anesthesia. Taking into consideration the minimum patient’s discomfort during and after the biopsy procedure, as well as the aesthetics aspect, it is essential to reflect on the best site of the body for the biopsy procedure combined with the success of getting robust fibroblast cultures in the lab. For this purpose, we compared the efficiency of four biopsy sites of the body (skin from eyelid, back of the ear, abdominal cesarean scar and groin). Cell proliferation assays and viability after cryopreservation were measured. Our results revealed that scar tissue provided fibroblasts with higher proliferative rates. Also, fibroblasts from scar tissues presented a higher viability after the thawing process.


Biochemical and Biophysical Research Communications | 2017

The impact of Zika virus in the brain.

Fabiele Baldino Russo; Patricia Cristina Baleeiro Beltrão-Braga

The recent outbreak of ZIKV in Brazil called the attention of the world because the effects of viral infection in the brain under development in fetuses. Consequences of vertical infection comprise brain malformation, especially microcephaly, eye and musculoskeletal abnormalities, among others. In adults, outcomes of infection include meningoencephalitis and Guillain-Barré Syndrome. Recent data specific suggest that neural progenitor cells are the main targets of ZIKV infection, causing massive cellular death and impairment in the neurogenesis process. Here we review the fetal and adult brain damage after ZIKV exposure, exploring models to study the mechanisms underlying the pathways related to microcephaly and cell death.

Collaboration


Dive into the Fabiele Baldino Russo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roberto H. Herai

Pontifícia Universidade Católica do Paraná

View shared research outputs
Researchain Logo
Decentralizing Knowledge