Graciela Conceição Pignatari
University of São Paulo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Graciela Conceição Pignatari.
Nature | 2016
Fernanda R. Cugola; Isabella Rodrigues Fernandes; Fabiele Baldino Russo; Beatriz C. Freitas; João Leonardo Rodrigues Mendonça Dias; Katia P. Guimarães; Cecília Benazzato; Nathalia Almeida; Graciela Conceição Pignatari; Sarah Romero; Carolina Manganeli Polonio; Isabela Cunha; Carla Longo de Freitas; Wesley Nogueira Brandão; Cristiano Rossato; David G. Andrade; Daniele de Paula Faria; Alexandre Teles Garcez; Carlos A. Buchpigel; Carla Torres Braconi; Érica A. Mendes; Amadou A. Sall; Paolo Marinho de Andrade Zanotto; Jean Pierre Schatzmann Peron; Alysson R. Muotri; Patricia Cristina Baleeiro Beltrão-Braga
Summary Zika virus (ZIKV) is an arbovirus belonging to the genus Flavivirus (Family Flaviviridae) and was first described in 1947 in Uganda following blood analyses of sentinel Rhesus monkeys1. Until the 20th century, the African and Asian lineages of the virus did not cause meaningful infections in humans. However, in 2007, vectored by Aedes aegypti mosquitoes, ZIKV caused the first noteworthy epidemic on the island of Yap in Micronesia2. Patients experienced fever, skin rash, arthralgia and conjunctivitis2. From 2013 to 2015, the Asian lineage of the virus caused further massive outbreaks in New Caledonia and French Polynesia. In 2013, ZIKV reached Brazil, later spreading to other countries in South and Central America3. In Brazil, the virus has been linked to congenital malformations, including microcephaly and other severe neurological diseases, such as Guillain-Barré syndrome4,5. Despite clinical evidence, direct experimental proof showing that the Brazilian ZIKV (ZIKVBR) strain causes birth defects remains missing6. Here we demonstrate that the ZIKVBR infects fetuses, causing intra-uterine growth restriction (IUGR), including signs of microcephaly in mice. Moreover, the virus infects human cortical progenitor cells, leading to an increase in cell death. Finally, we observed that the infection of human brain organoids resulted in a reduction of proliferative zones and disrupted cortical layers. These results indicate that ZIKVBR crosses the placenta and causes microcephaly by targeting cortical progenitor cells, inducing cell death by apoptosis and autophagy, impairing neurodevelopment. Our data reinforce the growing body of evidence linking the ZIKVBR outbreak to the alarming number of cases of congenital brain malformations. Our model can be used to determine the efficiency of therapeutic approaches to counteracting the harmful impact of ZIKVBR in human neurodevelopment.
Cell Transplantation | 2011
Patricia Cristina Baleeiro Beltrão-Braga; Graciela Conceição Pignatari; Paulo César Maiorka; Nélio Alessando Jesus Oliveira; Nelson F. Lizier; Cristiane V. Wenceslau; Alysson R. Muotri; Irina Kerkis
Induced pluripotent stem cells (iPSCs) can be created by forcing expression of certain genes in fibroblasts or other somatic cell types, reversing them to a pluripotent state similar to that of embryonic stem cells (ESC). Here, we used human immature dental pulp stem cells (hIDPSCs) as an alternative source for creating iPSC. hIDPSCs can be easily isolated from accessible tissue of young and adult patients. hIDPSCs possess a fibroblast-like morphology, retaining characteristics of adult multipotent stem cells. Reprogramming of hIDPSCs was fast, producing primary hIDPSC-iPSC colonies even under feeder-free conditions. hIDPSCs acquired ESC-like morphology, expressed pluripotent markers, possessed stable, normal karyotypes, and demonstrated the ability to differentiated in vitro and in vivo. Our data demonstrate that hIDPSCs-iPSCs offer an advantageous cell system for future cell therapy and basic studies, particularly as a model for pediatric developmental disorders.
World journal of transplantation | 2015
Fabiele Baldino Russo; Fernanda R. Cugola; Isabella Rodrigues Fernandes; Graciela Conceição Pignatari; Patricia Cristina Baleeiro Beltrão-Braga
Several diseases have been successfully modeled since the development of induced pluripotent stem cell (iPSC) technology in 2006. Since then, methods for increased reprogramming efficiency and cell culture maintenance have been optimized and many protocols for differentiating stem cell lines have been successfully developed, allowing the generation of several cellular subtypes in vitro. Gene editing technologies have also greatly advanced lately, enhancing disease-specific phenotypes by creating isogenic cell lines, allowing mutations to be corrected in affected samples or inserted in control lines. Neurological disorders have benefited the most from iPSC-disease modeling for its capability for generating disease-relevant cell types in vitro from the central nervous system, such as neurons and glial cells, otherwise only available from post-mortem samples. Patient-specific iPSC-derived neural cells can recapitulate the phenotypes of these diseases and therefore, considerably enrich our understanding of pathogenesis, disease mechanism and facilitate the development of drug screening platforms for novel therapeutic targets. Here, we review the accomplishments and the current progress in human neurological disorders by using iPSC modeling for Alzheimers disease, Parkinsons disease, Huntingtons disease, spinal muscular atrophy, amyotrophic lateral sclerosis, duchenne muscular dystrophy, schizophrenia and autism spectrum disorders, which include Timothy syndrome, Fragile X syndrome, Angelman syndrome, Prader-Willi syndrome, Phelan-McDermid, Rett syndrome as well as Nonsyndromic Autism.
Cytometry Part A | 2013
Patricia Cristina Baleeiro Beltrão-Braga; Graciela Conceição Pignatari; Fabiele Baldino Russo; Isabella Rodrigues Fernandes; Alysson R. Muotri
Human pluripotent stem cells bring promise in regenerative medicine due to their self‐renewing ability and the potential to become any cell type in the body. Moreover, pluripotent stem cells can produce specialized cell types that are affected in certain diseases, generating a new way to study cellular and molecular mechanisms involved in the disease pathology under the controlled conditions of a scientific laboratory. Thus, induced pluripotent stem cells (iPSC) are already being used to gain insights into the biological mechanisms of several human disorders. Here we review the use of iPSC as a novel tool for disease modeling in the lab.
Regulatory Peptides | 2006
Silvana Aparecida Alves Correa; Graciela Conceição Pignatari; Emer S. Ferro; Nelson A.S. Pacheco; Claudio M. Costa-Neto; João Bosco Pesquero; Laerte Oliveira; Antonio C. M. Paiva; Suma I. Shimuta
An insertion of residues in the third extracellular loop and a disulfide bond linking this loop to the N-terminal domain were identified in a structural model of a G-protein coupled receptor specific to angiotensin II (AT1 receptor), built in homology to the seven-transmembrane-helix bundle of rhodopsin. Both the insertion and the disulfide bond were located close to an extracellular locus, flanked by the second extracellular loop (EC-2), the third extracellular loop (EC-3) and the N-terminal domain of the receptor; they contained residues identified by mutagenesis studies to bind the angiotensin II N-terminal segment (residues D1 and R2). It was postulated that the insertion and the disulfide bond, also found in other receptors such as those for bradykinin, endothelin, purine and other ligands, might play a role in regulating the function of the AT1 receptor. This possibility was investigated by assaying AT1 forms devoid of the insertion and with mutations to Ser on both positions of Cys residues forming the disulfide bond. Binding and activation experiments showed that abolition of this bond led to constitutive activation, decay of agonist binding and receptor activation levels. Furthermore, the receptors thus mutated were translocated to cytosolic environments including those in the nucleus. The receptor form with full deletion of the EC-3 loop residue insertion, displayed a wild type receptor behavior.
Biological Chemistry | 2006
Graciela Conceição Pignatari; Raphael Rozenfeld; Emer S. Ferro; Laerte Oliveira; Antonio C. M. Paiva; Lakshmi A. Devi
Abstract Several studies have proposed that angiotensin II (Ang II) binds to its receptor AT1 through interactions with residues in helices V and VI, suggesting that the distance between these helices is crucial for ligand binding. Based on a 3D model of AT1 in which the C-terminus of Ang II is docked, we identified the hydrophobic residues of TM V and VI pointing towards the external face of the helices, which may play a role in the structure of the binding pocket and in the structural integrity of the receptor. We performed a systematic mutagenesis study of these residues and examined the binding, localization, maturation, and dimerization of the mutated receptors. We found that mutations of hydrophobic residues to alanine in helix V do not alter binding, whereas mutations to glutamate lead to loss of binding without a loss in cell surface expression, suggesting that the external face of helix V may not directly participate in binding, but may rather contribute to the structure of the binding pocket. In contrast, mutations of hydrophobic residues to glutamate in helix VI lead to a loss in cell surface expression, suggesting that the external surface of helix VI plays a structural role and ensures correct folding of the receptor.
Brazilian Archives of Biology and Technology | 2013
Bruno Machado Bertassoli; Antônio Chaves de Assis Neto; Franceliusa Delys de Oliveira; Maria Angélica Machado Arroyo; Juliana Shimara Pires Ferrão; Jodonai Barbosa da Silva; Graciela Conceição Pignatari; Patrícia Cristina Baleeiro Beltrão Braga
The study of stem cells has evolved rapidly in recent decades. The importance is given to the concept that these cells are potentially able to become any cell type and have the power of self-renewal throughout the life of the organism. Mesenchymal stem cells (MSCs) can be isolated from various organs of the body such as bone marrow, adipose tissue, synovium, muscle and dermis, deciduous teeth, umbilical cord, placenta, liver, spleen and thymus. After their isolation in vitro, mesenchymal stem cells have the capacity to differentiate into various mesenchymal lineages and various tissues after the use of appropriate cultures. Studies have reported that mesenchymal stem cells from adipose tissue have the potential to differentiate themselves, like the cells commonly studied bone marrow. Adipose tissue is attractive due to its easy access, rapid expansion in vitro and only one collects the large amount of tissue. This review intends to show the protocols for isolation, cell culture and means of commercial cellular differentiation most widely used with emphasis on adipose tissue.
Biological Psychiatry | 2017
Fabiele Baldino Russo; Beatriz C. Freitas; Graciela Conceição Pignatari; Isabella Rodrigues Fernandes; Jonathan Sebat; Alysson R. Muotri; Patricia Cristina Baleeiro Beltrão-Braga
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder with unclear etiology and imprecise genetic causes. The main goal of this work was to investigate neuronal connectivity and the interplay between neurons and astrocytes from individuals with nonsyndromic ASD using induced pluripotent stem cells. METHODS Induced pluripotent stem cells were derived from a clinically well-characterized cohort of three individuals with nonsyndromic ASD sharing common behaviors and three control subjects, two clones each. We generated mixed neural cultures analyzing synaptogenesis and neuronal activity using a multielectrode array platform. Furthermore, using an enriched astrocyte population, we investigated their role in neuronal maintenance. RESULTS ASD-derived neurons had a significant decrease in synaptic gene expression and protein levels, glutamate neurotransmitter release, and, consequently, reduced spontaneous firing rate. Based on co-culture experiments, we observed that ASD-derived astrocytes interfered with proper neuronal development. In contrast, control-derived astrocytes rescued the morphological neuronal phenotype and synaptogenesis defects from ASD neuronal co-cultures. Furthermore, after identifying interleukin-6 secretion from astrocytes in individuals with ASD as a possible culprit for neural defects, we were able to increase synaptogenesis by blocking interleukin-6 levels. CONCLUSIONS Our findings reveal the contribution of astrocytes to neuronal phenotype and confirm previous studies linking interleukin-6 and autism, suggesting potential novel therapeutic pathways for a subtype of individuals with ASD. This is the first report demonstrating that glial dysfunctions could contribute to nonsyndromic autism pathophysiology using induced pluripotent stem cells modeling disease technology.
Acta Cirurgica Brasileira | 2017
Matheus Levi Tajra Feitosa; Carlos Alberto Palmeira Sarmento; Renato Zonzini Bocabello; Patricia Cristina Baleeiro Beltrão-Braga; Graciela Conceição Pignatari; Robson F. Giglio; Maria Angélica Miglino; Jéssica Rodrigues Orlandin; Carlos Eduardo Ambrósio
Purpose: To investigate the therapeutic potential of human immature dental pulp stem cells in the treatment of chronic spinal cord injury in dogs. Methods: Three dogs of different breeds with chronic SCI were presented as animal clinical cases. Human immature dental pulp stem cells were injected at three points into the spinal cord, and the animals were evaluated by limb function and magnetic resonance imaging (MRI) pre and post-operative. Results: There was significant improvement from the limb function evaluated by Olby Scale, though it was not supported by the imaging data provided by MRI and clinical sign and evaluation. Conclusion: Human dental pulp stem cell therapy presents promising clinical results in dogs with chronic spinal cord injuries, if used in association with physical therapy.
Cytotechnology | 2016
Isabella Rodrigues Fernandes; Fabiele Baldino Russo; Graciela Conceição Pignatari; M. M. Evangelinellis; S. Tavolari; Alysson R. Muotri; Patricia Cristina Baleeiro Beltrão-Braga
Fibroblasts are cells widely used in cell culture, both for transient primary cell culture or permanent as transformed cell lines. Lately, fibroblasts become cell sources for use in disease modeling after cell reprogramming because it is easily accessible in the body. Fibroblasts in patients will maintain all genetic background during reprogramming into induced pluripotent stem cells. In spite of their large use, fibroblasts are obtained after an invasive procedure, a superficial punch skin biopsy, collected under patient’s local anesthesia. Taking into consideration the minimum patient’s discomfort during and after the biopsy procedure, as well as the aesthetics aspect, it is essential to reflect on the best site of the body for the biopsy procedure combined with the success of getting robust fibroblast cultures in the lab. For this purpose, we compared the efficiency of four biopsy sites of the body (skin from eyelid, back of the ear, abdominal cesarean scar and groin). Cell proliferation assays and viability after cryopreservation were measured. Our results revealed that scar tissue provided fibroblasts with higher proliferative rates. Also, fibroblasts from scar tissues presented a higher viability after the thawing process.