Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fabien Campagne is active.

Publication


Featured researches published by Fabien Campagne.


Nucleic Acids Research | 1998

GPCRDB: an information system for G protein-coupled receptors

Florence Horn; Emmanuel Bettler; Laerte Oliveira; Fabien Campagne; Fred E. Cohen; Gerrit Vriend

Recent developments in G protein-coupled receptor (GPCR) structural biology and pharmacology have greatly enhanced our knowledge of receptor structure-function relations, and have helped improve the scientific foundation for drug design studies. The GPCR database, GPCRdb, serves a dual role in disseminating and enabling new scientific developments by providing reference data, analysis tools and interactive diagrams. This paper highlights new features in the fifth major GPCRdb release: (i) GPCR crystal structure browsing, superposition and display of ligand interactions; (ii) direct deposition by users of point mutations and their effects on ligand binding; (iii) refined snake and helix box residue diagram looks; and (iii) phylogenetic trees with receptor classification colour schemes. Under the hood, the entire GPCRdb front- and back-ends have been re-coded within one infrastructure, ensuring a smooth browsing experience and development. GPCRdb is available at http://www.gpcrdb.org/ and its open source code at https://bitbucket.org/gpcr/protwis.


Cancer Cell | 2010

DNA Methylation Signatures Identify Biologically Distinct Subtypes in Acute Myeloid Leukemia

Maria E. Figueroa; Sanne Lugthart; Yushan Li; Claudia Erpelinck-Verschueren; Xutao Deng; Paul J. Christos; Elizabeth D. Schifano; James G. Booth; Wim L.J. van Putten; Lucy Skrabanek; Fabien Campagne; Madhu Mazumdar; John M. Greally; Peter J. M. Valk; Bob Löwenberg; Ruud Delwel; Ari Melnick

We hypothesized that DNA methylation distributes into specific patterns in cancer cells, which reflect critical biological differences. We therefore examined the methylation profiles of 344 patients with acute myeloid leukemia (AML). Clustering of these patients by methylation data segregated patients into 16 groups. Five of these groups defined new AML subtypes that shared no other known feature. In addition, DNA methylation profiles segregated patients with CEBPA aberrations from other subtypes of leukemia, defined four epigenetically distinct forms of AML with NPM1 mutations, and showed that established AML1-ETO, CBFb-MYH11, and PML-RARA leukemia entities are associated with specific methylation profiles. We report a 15 gene methylation classifier predictive of overall survival in an independent patient cohort (p < 0.001, adjusted for known covariates).


Nature Genetics | 2001

Tas1r3 , encoding a new candidate taste receptor, is allelic to the sweet responsiveness locus Sac

Marianna Max; Y. Gopi Shanker; Liquan Huang; Minqing Rong; Zhan Liu; Fabien Campagne; Harel Weinstein; Sami Damak; Robert F. Margolskee

The ability to taste the sweetness of carbohydrate-rich foodstuffs has a critical role in the nutritional status of humans. Although several components of bitter transduction pathways have been identified, the receptors and other sweet transduction elements remain unknown. The Sac locus in mouse, mapped to the distal end of chromosome 4 (refs. 7–9), is the major determinant of differences between sweet-sensitive and -insensitive strains of mice in their responsiveness to saccharin, sucrose and other sweeteners. To identify the human Sac locus, we searched for candidate genes within a region of approximately one million base pairs of the sequenced human genome syntenous to the region of Sac in mouse. From this search, we identified a likely candidate: T1R3, a previously unknown G protein-coupled receptor (GPCR) and the only GPCR in this region. Mouse Tas1r3 (encoding T1r3) maps to within 20,000 bp of the marker closest to Sac (ref. 9) and, like human TAS1R3, is expressed selectively in taste receptor cells. By comparing the sequence of Tas1r3 from several independently derived strains of mice, we identified a specific polymorphism that assorts between taster and non-taster strains. According to models of its structure, T1r3 from non-tasters is predicted to have an extra amino-terminal glycosylation site that, if used, would interfere with dimerization.


Cell | 2008

A Polymorphism in CALHM1 Influences Ca2+ Homeostasis, Aβ Levels, and Alzheimer's Disease Risk

Ute Dreses-Werringloer; Jean Charles Lambert; Valérie Vingtdeux; Haitian Zhao; Horia Vais; Adam P. Siebert; Ankit Jain; Jeremy Koppel; Anne Rovelet-Lecrux; Didier Hannequin; Florence Pasquier; Daniela Galimberti; Elio Scarpini; David Mann; Corinne Lendon; Dominique Campion; Philippe Amouyel; Peter Davies; J. Kevin Foskett; Fabien Campagne; Philippe Marambaud

Alzheimers disease (AD) is a genetically heterogeneous disorder characterized by early hippocampal atrophy and cerebral amyloid-beta (Abeta) peptide deposition. Using TissueInfo to screen for genes preferentially expressed in the hippocampus and located in AD linkage regions, we identified a gene on 10q24.33 that we call CALHM1. We show that CALHM1 encodes a multipass transmembrane glycoprotein that controls cytosolic Ca(2+) concentrations and Abeta levels. CALHM1 homomultimerizes, shares strong sequence similarities with the selectivity filter of the NMDA receptor, and generates a large Ca(2+) conductance across the plasma membrane. Importantly, we determined that the CALHM1 P86L polymorphism (rs2986017) is significantly associated with AD in independent case-control studies of 3404 participants (allele-specific OR = 1.44, p = 2 x 10(-10)). We further found that the P86L polymorphism increases Abeta levels by interfering with CALHM1-mediated Ca(2+) permeability. We propose that CALHM1 encodes an essential component of a previously uncharacterized cerebral Ca(2+) channel that controls Abeta levels and susceptibility to late-onset AD.


JAMA Oncology | 2015

Whole-Exome Sequencing of Metastatic Cancer and Biomarkers of Treatment Response

Himisha Beltran; Kenneth Eng; Juan Miguel Mosquera; Alessandro Romanel; Hanna Rennert; Myriam Kossai; Chantal Pauli; Bishoy Faltas; Jacqueline Fontugne; Kyung Park; Jason R. Banfelder; Davide Prandi; Neel Madhukar; Tuo Zhang; Jessica Padilla; Noah Greco; Terra J. McNary; Erick Herrscher; David Wilkes; Theresa Y. MacDonald; Hui Xue; Vladimir Vacic; Anne-Katrin Emde; Dayna Oschwald; Adrian Y. Tan; Zhengming Chen; Colin Collins; Martin Gleave; Yuzhuo Wang; Dimple Chakravarty

IMPORTANCE Understanding molecular mechanisms of response and resistance to anticancer therapies requires prospective patient follow-up and clinical and functional validation of both common and low-frequency mutations. We describe a whole-exome sequencing (WES) precision medicine trial focused on patients with advanced cancer. OBJECTIVE To understand how WES data affect therapeutic decision making in patients with advanced cancer and to identify novel biomarkers of response. DESIGN, SETTING, AND PATIENTS Patients with metastatic and treatment-resistant cancer were prospectively enrolled at a single academic center for paired metastatic tumor and normal tissue WES during a 19-month period (February 2013 through September 2014). A comprehensive computational pipeline was used to detect point mutations, indels, and copy number alterations. Mutations were categorized as category 1, 2, or 3 on the basis of actionability; clinical reports were generated and discussed in precision tumor board. Patients were observed for 7 to 25 months for correlation of molecular information with clinical response. MAIN OUTCOMES AND MEASURES Feasibility, use of WES for decision making, and identification of novel biomarkers. RESULTS A total of 154 tumor-normal pairs from 97 patients with a range of metastatic cancers were sequenced, with a mean coverage of 95X and 16 somatic alterations detected per patient. In total, 16 mutations were category 1 (targeted therapy available), 98 were category 2 (biologically relevant), and 1474 were category 3 (unknown significance). Overall, WES provided informative results in 91 cases (94%), including alterations for which there is an approved drug, there are therapies in clinical or preclinical development, or they are considered drivers and potentially actionable (category 1-2); however, treatment was guided in only 5 patients (5%) on the basis of these recommendations because of access to clinical trials and/or off-label use of drugs. Among unexpected findings, a patient with prostate cancer with exceptional response to treatment was identified who harbored a somatic hemizygous deletion of the DNA repair gene FANCA and putative partial loss of function of the second allele through germline missense variant. Follow-up experiments established that loss of FANCA function was associated with platinum hypersensitivity both in vitro and in patient-derived xenografts, thus providing biologic rationale and functional evidence for his extreme clinical response. CONCLUSIONS AND RELEVANCE The majority of advanced, treatment-resistant tumors across tumor types harbor biologically informative alterations. The establishment of a clinical trial for WES of metastatic tumors with prospective follow-up of patients can help identify candidate predictive biomarkers of response.


Proteomics Clinical Applications | 2009

Urine proteomics for profiling of human disease using high accuracy mass spectrometry

Alex Kentsis; Flavio Monigatti; Kevin C. Dorff; Fabien Campagne; Richard G. Bachur; Hanno Steen

Knowledge of the biologically relevant components of human tissues has enabled the invention of numerous clinically useful diagnostic tests, as well as non‐invasive ways of monitoring disease and its response to treatment. Recent use of advanced MS‐based proteomics revealed that the composition of human urine is more complex than anticipated. Here, we extend the current characterization of the human urinary proteome by extensively fractionating urine using ultracentrifugation, gel electrophoresis, ion exchange and reverse‐phase chromatography, effectively reducing mixture complexity while minimizing loss of material. By using high‐accuracy mass measurements of the linear ion trap‐Orbitrap mass spectrometer and LC‐MS/MS of peptides generated from such extensively fractionated specimens, we identified 2362 proteins in routinely collected individual urine specimens, including more than 1000 proteins not described in previous studies. Many of these are biomedically significant molecules, including glomerularly filtered cytokines and shed cell surface molecules, as well as renally and urogenitally produced transporters and structural proteins. Annotation of the identified proteome reveals distinct patterns of enrichment, consistent with previously described specific physiologic mechanisms, including 336 proteins that appear to be expressed by a variety of distal organs and glomerularly filtered from serum. Comparison of the proteomes identified from 12 individual specimens revealed a subset of generally invariant proteins, as well as individually variable ones, suggesting that our approach may be used to study individual differences in age, physiologic state and clinical condition. Consistent with this, annotation of the identified proteome by using machine learning and text mining exposed possible associations with 27 common and more than 500 rare human diseases, establishing a widely useful resource for the study of human pathophysiology and biomarker discovery.


Infection and Immunity | 2005

Pseudomonas aeruginosa SoxR Does Not Conform to the Archetypal Paradigm for SoxR-Dependent Regulation of the Bacterial Oxidative Stress Adaptive Response

Marco Palma; Juan Zurita; Julian A. Ferreras; Stefan Worgall; Davise H. Larone; Lei Shi; Fabien Campagne; Luis E. N. Quadri

ABSTRACT SoxR is a transcriptional regulator that controls an oxidative stress response in Escherichia coli. The regulator is primarily activated by superoxide anion-dependent oxidation. Activated SoxR turns on transcription of a single gene, soxS, which encodes a transcriptional regulator that activates a regulon that includes dozens of oxidative stress response genes. SoxR homologues have been identified in many bacterial species, including the opportunistic pathogen Pseudomonas aeruginosa. However, the expected SoxR partner, SoxS, has not been found in P. aeruginosa. Thus, the primary gene target(s) of P. aeruginosa SoxR is unknown and the involvement of this regulator in the oxidative stress response of the bacterium remains unclear. We utilized transcriptome profiling to identify the P. aeruginosa SoxR regulon and constructed and characterized an unmarked P. aeruginosa ΔsoxR mutant. We provide evidence indicating that P. aeruginosa SoxR activates a six-gene regulon in response to O2·−-induced stress. The regulon includes three transcriptional units: (i) the recently identified mexGHI-ompD four-gene operon, which encodes a multidrug efflux pump system involved in quorum-sensing signal homeostasis; (ii) gene PA3718, encoding a probable efflux pump; and (iii) gene PA2274, encoding a probable monooxygenase. We also demonstrate that P. aeruginosa SoxR is not a key regulatory player in the oxidative stress response. Finally, we show that P. aeruginosa SoxR is required for virulence in a mouse model of intrapulmonary infection. These results demonstrate that the E. coli-based SoxRS paradigm does not hold in P. aeruginosa and foster new hypotheses for the possible physiological role of P. aeruginosa SoxR.


Molecular Biology of the Cell | 2009

LIM Kinase 1 and Cofilin Regulate Actin Filament Population Required for Dynamin-dependent Apical Carrier Fission from the Trans-Golgi Network

Susana Salvarezza; Sylvie Deborde; Ryan Schreiner; Fabien Campagne; Michael M. Kessels; Britta Qualmann; Alfredo Cáceres; Geri Kreitzer; Enrique Rodriguez-Boulan

The functions of the actin cytoskeleton in post-Golgi trafficking are still poorly understood. Here, we report the role of LIM Kinase 1 (LIMK1) and its substrate cofilin in the trafficking of apical and basolateral proteins in Madin-Darby canine kidney cells. Our data indicate that LIMK1 and cofilin organize a specialized population of actin filaments at the Golgi complex that is selectively required for the emergence of an apical cargo route to the plasma membrane (PM). Quantitative pulse-chase live imaging experiments showed that overexpression of kinase-dead LIMK1 (LIMK1-KD), or of LIMK1 small interfering RNA, or of an activated cofilin mutant (cofilin S3A), selectively slowed down the exit from the trans-Golgi network (TGN) of the apical PM marker p75-green fluorescent protein (GFP) but did not interfere with the apical PM marker glycosyl phosphatidylinositol-YFP or the basolateral PM marker neural cell adhesion molecule-GFP. High-resolution live imaging experiments of carrier formation and release by the TGN and analysis of peri-Golgi actin dynamics using photoactivatable GFP suggest a scenario in which TGN-localized LIMK1-cofilin regulate a population of actin filaments required for dynamin-syndapin-cortactin-dependent generation and/or fission of precursors to p75 transporters.


Clinical Cancer Research | 2006

Gene Expression Profiling Separates Chromophobe Renal Cell Carcinoma from Oncocytoma and Identifies Vesicular Transport and Cell Junction Proteins as Differentially Expressed Genes

Stephen Rohan; Jiangling J. Tu; Jean Kao; Piali Mukherjee; Fabien Campagne; Xi K. Zhou; Elizabeth Hyjek; Miguel A. Alonso; Yao-Tseng Chen

Purpose: To compare gene expression profiles of chromophobe renal cell carcinoma (RCC) and benign oncocytoma, aiming at identifying differentially expressed genes. Experimental Design: Nine cases each of chromophobe RCC and oncocytoma were analyzed by oligonucleotide microarray. Candidate genes that showed consistent differential expression were validated by reverse transcription-PCR using 25 fresh-frozen and 15 formalin-fixed, paraffin-embedded tumor samples. Immunohistochemical analysis was also done for two selected gene products, claudin 8 and MAL2. Results: Unsupervised hierarchical clustering separated the chromophobe RCC and oncocytoma into two distinct groups. By a combination of data analysis approaches, we identified 11 candidate genes showing consistent differential expression between chromophobe RCC and oncocytoma. Five of these genes, AP1M2, MAL2, PROM2, PRSS8, and FLJ20171, were shown to effectively separate these two tumor groups by quantitative reverse transcription-PCR using fresh tissue samples, with similar trends seen on formalin-fixed tissues. Immunohistochemical analysis revealed selective expression of MAL2 and claudin 8 in distal renal tubules, with MAL2 antibody showing differential expression between chromophobe RCC and oncocytoma. Functional analyses suggest that genes encoding tight junction proteins and vesicular membrane trafficking proteins, normally expressed in distal nephrons, are retained in chromophobe RCC and lost or consistently down-regulated in oncocytoma, indicating that these two tumor types, believed to be both derived from distal tubules, are likely distinctive in their histogenesis. Conclusions: We showed that chromophobe RCC and oncocytoma are distinguishable by mRNA expression profiles and a panel of gene products potentially useful as diagnostic markers were identified.


Bioinformatics | 2010

GPCR-OKB

George Khelashvili; Kevin C. Dorff; Jufang Shan; Marta Camacho-Artacho; Lucy Skrabanek; Bas Vroling; Michel Bouvier; Lakshmi A. Devi; Susan R. George; Jonathan A. Javitch; Martin J. Lohse; Graeme Milligan; Richard R. Neubig; Krzysztof Palczewski; Marc Parmentier; Jean-Philippe Pin; Gerrit Vriend; Fabien Campagne; Marta Filizola

SUMMARY Rapid expansion of available data about G Protein Coupled Receptor (GPCR) dimers/oligomers over the past few years requires an effective system to organize this information electronically. Based on an ontology derived from a community dialog involving colleagues using experimental and computational methodologies, we developed the GPCR-Oligomerization Knowledge Base (GPCR-OKB). GPCR-OKB is a system that supports browsing and searching for GPCR oligomer data. Such data were manually derived from the literature. While focused on GPCR oligomers, GPCR-OKB is seamlessly connected to GPCRDB, facilitating the correlation of information about GPCR protomers and oligomers. AVAILABILITY AND IMPLEMENTATION The GPCR-OKB web application is freely available at http://www.gpcr-okb.org

Collaboration


Dive into the Fabien Campagne's collaboration.

Top Co-Authors

Avatar

Philippe Marambaud

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter Davies

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Valérie Vingtdeux

The Feinstein Institute for Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Haitian Zhao

The Feinstein Institute for Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge