Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Harel Weinstein is active.

Publication


Featured researches published by Harel Weinstein.


Methods in Neurosciences | 1995

[19] Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors

Juan A. Ballesteros; Harel Weinstein

Publisher Summary This chapter discusses the integrated methods for the construction of three-dimensional models and computational probing of structure–function relations in G protein-coupled receptors (GPCR). The rapid pace of cloning and expression of G protein-coupled receptors offers attractive opportunities to probe the structural basis of signal transduction mechanisms at the level of these cell-surface receptors. Major insights have emerged from comparisons and classifications of the amino acid sequences of GPCRs into families defined by evolutionary developments and adapted to perform selective functions. Structural data on GPCRs, based on biochemical, immunological, and biophysical approaches have validated consensus architecture of GPCRs with an extracellular N-terminus, a cytoplasmic C-terminus, and a transmembrane portion comprised of seven-transmembrane helical domains connected by loops. Developments in the molecular modeling and computational exploration of GPCR proteins indicate a tantalizing potential to alleviate some of these difficulties. These expectations are based on the increased rate of success achieved by molecular modeling and computational simulation methods in providing structural insights relevant to the functions of biological molecules.


Journal of Pharmacology and Experimental Therapeutics | 2006

Functional Selectivity and Classical Concepts of Quantitative Pharmacology

Jonathan D. Urban; William P. Clarke; Mark von Zastrow; David E. Nichols; Brian K. Kobilka; Harel Weinstein; Jonathan A. Javitch; Bryan L. Roth; Arthur Christopoulos; Patrick M. Sexton; Keith J. Miller; Michael Spedding; Richard B. Mailman

The concept of intrinsic efficacy has been enshrined in pharmacology for half of a century, yet recent data have revealed that many ligands can differentially activate signaling pathways mediated via a single G protein-coupled receptor in a manner that challenges the traditional definition of intrinsic efficacy. Some terms for this phenomenon include functional selectivity, agonist-directed trafficking, and biased agonism. At the extreme, functionally selective ligands may be both agonists and antagonists at different functions mediated by the same receptor. Data illustrating this phenomenon are presented from serotonin, opioid, dopamine, vasopressin, and adrenergic receptor systems. A variety of mechanisms may influence this apparently ubiquitous phenomenon. It may be initiated by differences in ligand-induced intermediate conformational states, as shown for the β2-adrenergic receptor. Subsequent mechanisms that may play a role include diversity of G proteins, scaffolding and signaling partners, and receptor oligomers. Clearly, expanded research is needed to elucidate the proximal (e.g., how functionally selective ligands cause conformational changes that initiate differential signaling), intermediate (mechanisms that translate conformation changes into differential signaling), and distal mechanisms (differential effects on target tissue or organism). Besides the heuristically interesting nature of functional selectivity, there is a clear impact on drug discovery, because this mechanism raises the possibility of selecting or designing novel ligands that differentially activate only a subset of functions of a single receptor, thereby optimizing therapeutic action. It also may be timely to revise classic concepts in quantitative pharmacology and relevant pharmacological conventions to incorporate these new concepts.


Nature Genetics | 2001

Tas1r3 , encoding a new candidate taste receptor, is allelic to the sweet responsiveness locus Sac

Marianna Max; Y. Gopi Shanker; Liquan Huang; Minqing Rong; Zhan Liu; Fabien Campagne; Harel Weinstein; Sami Damak; Robert F. Margolskee

The ability to taste the sweetness of carbohydrate-rich foodstuffs has a critical role in the nutritional status of humans. Although several components of bitter transduction pathways have been identified, the receptors and other sweet transduction elements remain unknown. The Sac locus in mouse, mapped to the distal end of chromosome 4 (refs. 7–9), is the major determinant of differences between sweet-sensitive and -insensitive strains of mice in their responsiveness to saccharin, sucrose and other sweeteners. To identify the human Sac locus, we searched for candidate genes within a region of approximately one million base pairs of the sequenced human genome syntenous to the region of Sac in mouse. From this search, we identified a likely candidate: T1R3, a previously unknown G protein-coupled receptor (GPCR) and the only GPCR in this region. Mouse Tas1r3 (encoding T1r3) maps to within 20,000 bp of the marker closest to Sac (ref. 9) and, like human TAS1R3, is expressed selectively in taste receptor cells. By comparing the sequence of Tas1r3 from several independently derived strains of mice, we identified a specific polymorphism that assorts between taster and non-taster strains. According to models of its structure, T1r3 from non-tasters is predicted to have an extra amino-terminal glycosylation site that, if used, would interfere with dimerization.


The EMBO Journal | 1997

Agonists induce conformational changes in transmembrane domains III and VI of the β2 adrenoceptor

Ulrik Gether; Sansan Lin; Pejman Ghanouni; Juan A. Ballesteros; Harel Weinstein; Brian K. Kobilka

Agonist binding to G protein‐coupled receptors is believed to promote a conformational change that leads to the formation of the active receptor state. However, the character of this conformational change which provides the important link between agonist binding and G protein coupling is not known. Here we report evidence that agonist binding to the β2 adrenoceptor induces a conformational change around 125Cys in transmembrane domain (TM) III and around 285Cys in TM VI. A series of mutant β2 adrenoceptors with a limited number of cysteines available for chemical derivatization were purified, site‐selectively labeled with the conformationally sensitive, cysteine‐reactive fluorophore IANBD and analyzed by fluorescence spectroscopy. Like the wild‐type receptor, mutant receptors containing 125Cys and/or 285Cys showed an agonist‐induced decrease in fluorescence, while no agonist‐induced response was observed in a receptor where these two cysteines were mutated. These data suggest that IANBD bound to 125Cys and 285Cys are exposed to a more polar environment upon agonist binding, and indicate that movements of transmembrane segments III and VI are involved in activation of G protein‐coupled receptors.


Journal of Biological Chemistry | 1997

Structural Instability of a Constitutively Active G Protein-coupled Receptor AGONIST-INDEPENDENT ACTIVATION DUE TO CONFORMATIONAL FLEXIBILITY

Gether U; Juan A. Ballesteros; Seifert R; Sanders-Bush E; Harel Weinstein; Brian K. Kobilka

Mutations in several domains can lead to agonist-independent, constitutive activation of G protein-coupled receptors. However, the nature of the structural and molecular changes that constitutively turn on a G protein-coupled receptor remains unknown. Here we show evidence that a constitutively activated mutant of the β2 adrenergic receptor (CAM) is characterized by structural instability and an exaggerated conformational response to ligand binding. The structural instability of CAM could be demonstrated by a 4-fold increase in the rate of denaturation of purified receptor at 37°C as compared with the wild type receptor. Spectroscopic analysis of purified CAM labeled with the conformationally sensitive and cysteine-reactive fluorophore, N,N′dimethyl-N-(iodoacetyl)-N′-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)ethylenediamine, further indicated that both agonist and antagonist elicit more profound structural changes in CAM than in the wild type protein. We propose that the mutation that confers constitutive activity to the β2 adrenergic receptor removes some stabilizing conformational constraints, allowing CAM to more readily undergo transitions between the inactive and the active states and making the receptor more susceptible to denaturation.


Nature | 2011

Substrate-modulated gating dynamics in a Na+-coupled neurotransmitter transporter homologue

Yongfang Zhao; Daniel S. Terry; Lei Shi; Matthias Quick; Harel Weinstein; Scott C. Blanchard; Jonathan A. Javitch

Neurotransmitter/Na+ symporters (NSSs) terminate neuronal signalling by recapturing neurotransmitter released into the synapse in a co-transport (symport) mechanism driven by the Na+ electrochemical gradient. NSSs for dopamine, noradrenaline and serotonin are targeted by the psychostimulants cocaine and amphetamine, as well as by antidepressants. The crystal structure of LeuT, a prokaryotic NSS homologue, revealed an occluded conformation in which a leucine (Leu) and two Na+ are bound deep within the protein. This structure has been the basis for extensive structural and computational exploration of the functional mechanisms of proteins with a LeuT-like fold. Subsequently, an ‘outward-open’ conformation was determined in the presence of the inhibitor tryptophan, and the Na+-dependent formation of a dynamic outward-facing intermediate was identified using electron paramagnetic resonance spectroscopy. In addition, single-molecule fluorescence resonance energy transfer imaging has been used to reveal reversible transitions to an inward-open LeuT conformation, which involve the movement of transmembrane helix TM1a away from the transmembrane helical bundle. We investigated how substrate binding is coupled to structural transitions in LeuT during Na+-coupled transport. Here we report a process whereby substrate binding from the extracellular side of LeuT facilitates intracellular gate opening and substrate release at the intracellular face of the protein. In the presence of alanine, a substrate that is transported ∼10-fold faster than leucine, we observed alanine-induced dynamics in the intracellular gate region of LeuT that directly correlate with transport efficiency. Collectively, our data reveal functionally relevant and previously hidden aspects of the NSS transport mechanism that emphasize the functional importance of a second substrate (S2) binding site within the extracellular vestibule. Substrate binding in this S2 site appears to act cooperatively with the primary substrate (S1) binding site to control intracellular gating more than 30 Å away, in a manner that allows the Na+ gradient to power the transport mechanism.


Nature Chemical Biology | 2009

Allosteric communication between protomers of dopamine class A GPCR dimers modulates activation.

Yang Han; Irina S. Moreira; Eneko Urizar; Harel Weinstein; Jonathan A. Javitch

A major obstacle to understanding the functional importance of dimerization between Class A G protein-coupled receptors (GPCRs) has been the methodological limitation in achieving control of the identity of the components comprising the signaling unit. We have developed a functional complementation assay that enables such control and illustrate it for the human dopamine D2 receptor. The minimal signaling unit, two receptors and a single G protein, is maximally activated by agonist binding to a single protomer, which suggests an asymmetrical activated dimer. Inverse agonist binding to the second protomer enhances signaling, whereas agonist binding to the second protomer blunts signaling. Ligand-independent constitutive activation of the second protomer also inhibits signaling. Thus, GPCR dimer function can be modulated by the activity state of the second protomer, which for a heterodimer may be altered in pathological states. Our novel methodology also makes possible the characterization of signaling from a defined heterodimer unit.


Trends in Pharmacological Sciences | 2000

Hinges, swivels and switches: the role of prolines in signalling via transmembrane α-helices

Mark S.P. Sansom; Harel Weinstein

Abstract Extracellular signals are transduced across membranes via conformational changes in the transmembrane domains (TMs) of ion channels and G-protein-coupled receptors (GPCRs). Experimental and simulation studies indicate that such conformational switches in transmembrane α-helices can be generated by proline-containing motifs that form molecular hinges. Computational approaches tested on model channel-forming peptides (e.g. alamethicin) reveal functional mechanisms in gap-junction proteins (such as connexin) and voltage-gated K + channels. Similarly, functionally important roles for proline-based switches in TM6 and TM7 were identified in GPCRs. However, hinges in transmembrane helices are not confined to proline-containing sequence motifs, as evidenced by a non-proline hinge in the M2 helix of the nicotinic acetylcholine receptor. This helix lines the pore and plays a key role in the gating of this channel.


Nature Neuroscience | 2008

The binding sites for cocaine and dopamine in the dopamine transporter overlap

Thijs Beuming; Julie Kniazeff; Marianne L Bergmann; Lei Shi; Luis Gracia; Klaudia Raniszewska; Amy Hauck Newman; Jonathan A. Javitch; Harel Weinstein; Ulrik Gether; Claus J. Loland

Cocaine is a widely abused substance with psychostimulant effects that are attributed to inhibition of the dopamine transporter (DAT). We present molecular models for DAT binding of cocaine and cocaine analogs constructed from the high-resolution structure of the bacterial transporter homolog LeuT. Our models suggest that the binding site for cocaine and cocaine analogs is deeply buried between transmembrane segments 1, 3, 6 and 8, and overlaps with the binding sites for the substrates dopamine and amphetamine, as well as for benztropine-like DAT inhibitors. We validated our models by detailed mutagenesis and by trapping the radiolabeled cocaine analog [3H]CFT in the transporter, either by cross-linking engineered cysteines or with an engineered Zn2+-binding site that was situated extracellularly to the predicted common binding pocket. Our data demonstrate the molecular basis for the competitive inhibition of dopamine transport by cocaine.


Journal of Biological Chemistry | 1998

Functional Microdomains in G-protein-coupled Receptors THE CONSERVED ARGININE-CAGE MOTIF IN THE GONADOTROPIN-RELEASING HORMONE RECEPTOR

Juan A. Ballesteros; Smiljka Kitanovic; Frank Guarnieri; Peter Davies; Bernard J. Fromme; Karel Konvicka; Ling Chi; Robert P. Millar; James S. Davidson; Harel Weinstein; Stuart C. Sealfon

An Arg present in the third transmembrane domain of all rhodopsin-like G-protein-coupled receptors is required for efficient signal transduction. Mutation of this Arg in the gonadotropin-releasing hormone receptor to Gln, His, or Lys abolished or severely impaired agonist-stimulated inositol phosphate generation, consistent with Arg having a role in receptor activation. To investigate the contribution of the surrounding structural domain in the actions of the conserved Arg, an integrated microdomain modeling and mutagenesis approach has been utilized. Two conserved residues that constrain the Arg side chain to a limited number of conformations have been identified. In the inactive wild-type receptor, the Arg side chain is proposed to form an ionic interaction with Asp3.49(138). Experimental results for the Asp3.49(138) → Asn mutant receptor show a modestly enhanced receptor efficiency, consistent with the hypothesis that weakening the Asp3.49(138)-Arg3.50(139)interaction by protonation of the Asp or by the mutation to Asn favors activation. With activation, the Asp3.49(138)-Arg3.50(139) ionic bond would break, and the unrestrained Arg would be prevented from orienting itself toward the water phase by a steric clash with Ile3.54(143). The mutation Ile3.54(143) → Ala, which eliminates this clash in simulations, causes a marked reduction in measured receptor signaling efficiency, implying that solvation of Arg3.50(139) prevents it from functioning in the activation of the receptor. These data are consistent with residues Asp3.49(138) and Ile3.54(143) forming a structural motif, which helps position Arg in its appropriate inactive and active receptor conformations.

Collaboration


Dive into the Harel Weinstein's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roman Osman

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ernest L. Mehler

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Saul Maayani

City University of New York

View shared research outputs
Top Co-Authors

Avatar

Jack Peter Green

City University of New York

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge