Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fabien Darfeuille is active.

Publication


Featured researches published by Fabien Darfeuille.


Nature | 2010

The primary transcriptome of the major human pathogen Helicobacter pylori

Cynthia M. Sharma; Steve Hoffmann; Fabien Darfeuille; Jérémy Reignier; Sven Findeiß; Alexandra Sittka; Sandrine Chabas; Kristin Reiche; Jörg Hackermüller; Richard Reinhardt; Peter F. Stadler; Jörg Vogel

Genome sequencing of Helicobacter pylori has revealed the potential proteins and genetic diversity of this prevalent human pathogen, yet little is known about its transcriptional organization and noncoding RNA output. Massively parallel cDNA sequencing (RNA-seq) has been revolutionizing global transcriptomic analysis. Here, using a novel differential approach (dRNA-seq) selective for the 5′ end of primary transcripts, we present a genome-wide map of H. pylori transcriptional start sites and operons. We discovered hundreds of transcriptional start sites within operons, and opposite to annotated genes, indicating that complexity of gene expression from the small H. pylori genome is increased by uncoupling of polycistrons and by genome-wide antisense transcription. We also discovered an unexpected number of ∼60 small RNAs including the ε-subdivision counterpart of the regulatory 6S RNA and associated RNA products, and potential regulators of cis- and trans-encoded target messenger RNAs. Our approach establishes a paradigm for mapping and annotating the primary transcriptomes of many living species.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Loop–loop interaction of HIV-1 TAR RNA with N3′ → P5′ deoxyphosphoramidate aptamers inhibits in vitro Tat-mediated transcription

Fabien Darfeuille; Andrey A. Arzumanov; Sergei M. Gryaznov; Michael J. Gait; Carmelo Di Primo; Jean-Jacques Toulmé

A hairpin RNA aptamer has been identified by in vitro selection against the transactivation-responsive element (TAR) of HIV-1. A nuclease-resistant N3′ → P5′ phosphoramidate isosequential analog of this aptamer also folds as a hairpin and forms with TAR a loop–loop “kissing” complex with a binding constant in the low nanomolar range as demonstrated by electrophoretic mobility-shift assays and surface plasmon resonance experiments. The key structural determinants, which contribute to the stability of the RNA aptamer–TAR complex, loop complementarity and the GA residues closing the aptamer loop, remain crucial for the N3′ → P5′ aptamer–TAR complex. Moreover, the N3′ → P5′ phosphoramidate aptamer specifically interferes with the binding of a peptide derived from the transactivator protein (Tat) peptide to TAR and selectively inhibits the Tat-mediated transcription in an in vitro assay, which marks this nuclease-resistant aptamer as a relevant candidate for experiments in cells.


Silence | 2011

Helicobacter pylori interferes with an embryonic stem cell micro RNA cluster to block cell cycle progression

Cédric Belair; Jessica Baud; Sandrine Chabas; Cynthia M. Sharma; Jörg Vogel; Cathy Staedel; Fabien Darfeuille

BackgroundMicroRNAs, post-transcriptional regulators of eukaryotic gene expression, are implicated in host defense against pathogens. Viruses and bacteria have evolved strategies that suppress microRNA functions, resulting in a sustainable infection. In this work we report that Helicobacter pylori, a human stomach-colonizing bacterium responsible for severe gastric inflammatory diseases and gastric cancers, downregulates an embryonic stem cell microRNA cluster in proliferating gastric epithelial cells to achieve cell cycle arrest.ResultsUsing a deep sequencing approach in the AGS cell line, a widely used cell culture model to recapitulate early events of H. pylori infection of gastric mucosa, we reveal that hsa-miR-372 is the most abundant microRNA expressed in this cell line, where, together with hsa-miR-373, it promotes cell proliferation by silencing large tumor suppressor homolog 2 (LATS2) gene expression. Shortly after H. pylori infection, miR-372 and miR-373 synthesis is highly inhibited, leading to the post-transcriptional release of LATS2 expression and thus, to a cell cycle arrest at the G1/S transition. This downregulation of a specific cell-cycle-regulating microRNA is dependent on the translocation of the bacterial effector CagA into the host cells, a mechanism highly associated with the development of severe atrophic gastritis and intestinal-type gastric carcinoma.ConclusionsThese data constitute a novel example of host-pathogen interplay involving microRNAs, and unveil the couple LATS2/miR-372 and miR-373 as an unexpected mechanism in infection-induced cell cycle arrest in proliferating gastric cells, which may be relevant in inhibition of gastric epithelium renewal, a major host defense mechanism against bacterial infections.


Nucleic Acids Research | 2010

Identification of a structural element of the hepatitis C virus minus strand RNA involved in the initiation of RNA synthesis

Kathleen Mahias; Neveen Ahmed-El-Sayed; Cyril Masante; Juliette Bitard; Cathy Staedel; Fabien Darfeuille; Michel Ventura; Thérèse Astier-Gin

The replication of the genomic RNA of the hepatitis C virus (HCV) of positive polarity involves the synthesis of a replication intermediate of negative polarity by the viral RNA-dependent RNA polymerase (NS5B). In vitro and likely in vivo, the NS5B initiates RNA synthesis without primers. This de novo mechanism needs specific interactions between the polymerase and viral RNA elements. Cis-acting elements involved in the initiation of (–) RNA synthesis have been identified in the 3′ non-coding region and in the NS5B coding region of the HCV RNA. However, the detailed contribution of sequences and/or structures of (–) RNA involved in the initiation of (+) RNA synthesis has been less studied. In this report, we identified an RNA element localized between nucleotides 177 and 222 from the 3′-end of the (–) RNA that is necessary for efficient initiation of RNA synthesis by the recombinant NS5B. By site-directed mutagenesis experiments, we demonstrate that the structure rather than the primary sequence of this domain is important for RNA synthesis. We also demonstrate that the intact structure of this RNA element is also needed for efficient RNA synthesis when the viral NS5B functions in association with other viral and cellular proteins in cultured hepatic cells.


Archive | 2006

Small Regulatory RNAs in Bacteria

E. Gerhart H. Wagner; Fabien Darfeuille

In recent years, small regulatory RNAs have been discovered at a staggering rate both in prokaryotes and eukaryotes. By now it is clear that post-transcriptional regulation of gene expression mediated by such RNAs is the rule rather than—as previously believed—the exception. In this chapter, we focus on small RNAs (sRNAs) encoded by bacterial chromosomes. The strategies for their discovery, their biological roles, and their mechanisms of action are discussed. Even though the number of well-characterized sRNAs in, for example, the best studied model enterobacterium Escherichia coli, is still small, the emerging pattern suggests that antisense mechanisms predominate. In terms of their roles in bacterial physiology, most of these RNAs appear to be involved in stress response regulation. Some other examples indicate functions in regulation of virulence. Two aspects of sRNA-mediated control arising from recent observations are addressed as well. Firstly, some sRNAs need proteins (notably Hfq) as helpers in their antisense activities—at this point the reason for this requirement is not understood. Secondly, only limited sequence complementarity is generally observed in antisense–target RNA pairs. This raises the fundamental question of how specific recognition is accomplished, and what the structure/sequence determinants for rapid and productive interaction are.


Molecular therapy. Nucleic acids | 2015

Inhibition of Gastric Tumor Cell Growth Using Seed-targeting LNA as Specific, Long-lasting MicroRNA Inhibitors

Cathy Staedel; Christine Varon; Phu Hung Nguyen; Brune Vialet; Lucie Chambonnier; Benoit Rousseau; Isabelle Soubeyran; Serge Evrard; Franck Couillaud; Fabien Darfeuille

MicroRNAs regulate eukaryotic gene expression upon pairing onto target mRNAs. This targeting is influenced by the complementarity between the microRNA “seed” sequence at its 5′ end and the seed-matching sequences in the mRNA. Here, we assess the efficiency and specificity of 8-mer locked nucleic acid (LNA)-modified oligonucleotides raised against the seeds of miR-372 and miR-373, two embryonic stem cell-specific microRNAs prominently expressed in the human gastric adenocarcinoma AGS cell line. Provided that the pairing is perfect over all the eight nucleotides of the seed and starts at nucleotide 2 or 1 at the microRNA 5′ end, these short LNAs inhibit miR-372/373 functions and derepress their common target, the cell cycle regulator LATS2. They decrease cell proliferation in vitro upon either transfection at nanomolar concentrations or unassisted delivery at micromolar concentrations. Subcutaneously delivered LNAs reduce tumor growth of AGS xenografts in mice, upon formation of a stable, specific heteroduplex with the targeted miR-372 and -373 and LATS2 upregulation. Their therapeutic potential is confirmed in fast-growing, miR-372-positive, primary human gastric adenocarcinoma xenografts in mice. Thus, microRNA silencing by 8-mer seed-targeting LNAs appears a valuable approach for both loss-of-function studies aimed at elucidating microRNA functions and for microRNA-based therapeutic strategies.


Chemistry: A European Journal | 2016

Oncogenic MicroRNAs Biogenesis as a Drug Target: Structure–Activity Relationship Studies on New Aminoglycoside Conjugates

Duc Duy Vo; Thi Phuong Anh Tran; Cathy Staedel; Rachid Benhida; Fabien Darfeuille; Audrey Di Giorgio; Maria Duca

MicroRNAs (miRNAs) are a recently discovered category of small RNA molecules that regulate gene expression at the post-transcriptional level. Accumulating evidence indicates that miRNAs are aberrantly expressed in a variety of human cancers and that the inhibition of these oncogenic miRNAs could find application in the therapy of different types of cancer. Herein, we describe the synthesis and biological evaluation of new small-molecule drugs that target oncogenic miRNAs production. In particular, we chose to target two miRNAs (i.e., miRNA-372 and -373) implicated in various types of cancer, such as gastric cancer. Their precursors (pre-miRNAs) are overexpressed in cancer cells and lead to mature miRNAs after cleavage of their stem-loop structure by the enzyme Dicer in the cytoplasm. Some of the newly synthesized conjugates can inhibit Dicer processing of the targeted pre-miRNAs in vitro with increased efficacy relative to our previous results (D.D. Vo et al., ACS Chem. Biol. 2014, 9, 711-721) and, more importantly, to inhibit proliferations of adenocarcinoma gastric cancer (AGS) cells overexpressing these miRNAs, thus representing promising leads for future drug development.


Pharmaceuticals | 2017

Aptamers in Bordeaux, 24–25 June 2016

Jean-Jacques Toulmé; Paloma H. Giangrande; Günter Mayer; Beatrix Suess; Frédéric Ducongé; Bruce A. Sullenger; Vittorio de Franciscis; Fabien Darfeuille; Eric Peyrin

The symposium covered the many different aspects of the selection and the characterization of aptamers as well as their application in analytical, diagnostic and therapeutic areas. Natural and artificial riboswitches were discussed. Recent advances for the design of mutated polymerases and of chemically modified nucleic acid bases that provide aptamers with new properties were presented. The power of aptamer platforms for multiplex analysis of biomarkers of major human diseases was described. The potential of aptamers for the treatment of cancer or cardiovascular diseases was also presented. Brief summaries of the lectures presented during the symposium are given in this report. A second edition of “Aptamers in Bordeaux” will take place on September 2017 (http://www.aptamers-in-bordeaux.com/).


Scientific Reports | 2018

Modulation of oncogenic miRNA biogenesis using functionalized polyamines

Cathy Staedel; Thi Phuong Anh Tran; Julie Giraud; Fabien Darfeuille; Audrey Di Giorgio; Nicolas J. Tourasse; Franck Salin; Philippe Uriac; Maria Duca

MicroRNAs are key factors in the regulation of gene expression and their deregulation has been directly linked to various pathologies such as cancer. The use of small molecules to tackle the overexpression of oncogenic miRNAs has proved its efficacy and holds the promise for therapeutic applications. Here we describe the screening of a 640-compound library and the identification of polyamine derivatives interfering with in vitro Dicer-mediated processing of the oncogenic miR-372 precursor (pre-miR-372). The most active inhibitor is a spermine-amidine conjugate that binds to the pre-miR-372 with a KD of 0.15 µM, and inhibits its in vitro processing with a IC50 of 1.06 µM. The inhibition of miR-372 biogenesis was confirmed in gastric cancer cells overexpressing miR-372 and a specific inhibition of proliferation through de-repression of the tumor suppressor LATS2 protein, a miR-372 target, was observed. This compound modifies the expression of a small set of miRNAs and its selective biological activity has been confirmed in patient-derived ex vivo cultures of gastric carcinoma. Polyamine derivatives are promising starting materials for future studies about the inhibition of oncogenic miRNAs and, to the best of our knowledge, this is the first report about the application of functionalized polyamines as miRNAs interfering agents.


Microbiology spectrum | 2018

Type I Toxin-Antitoxin Systems: Regulating Toxin Expression via Shine-Dalgarno Sequence Sequestration and Small RNA Binding

Sara Masachis; Fabien Darfeuille

Toxin-antitoxin (TA) systems are small genetic loci composed of two adjacent genes: a toxin and an antitoxin that prevents toxin action. Despite their wide distribution in bacterial genomes, the reasons for TA systems being on chromosomes remain enigmatic. In this review, we focus on type I TA systems, composed of a small antisense RNA that plays the role of an antitoxin to control the expression of its toxin counterpart. It does so by direct base-pairing to the toxin-encoding mRNA, thereby inhibiting its translation and/or promoting its degradation. However, in many cases, antitoxin binding is not sufficient to avoid toxicity. Several cis-encoded mRNA elements are also required for repression, acting to uncouple transcription and translation via the sequestration of the ribosome binding site. Therefore, both antisense RNA binding and compact mRNA folding are necessary to tightly control toxin synthesis and allow the presence of these toxin-encoding systems on bacterial chromosomes.

Collaboration


Dive into the Fabien Darfeuille's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jörg Vogel

University of Würzburg

View shared research outputs
Top Co-Authors

Avatar

Eric Dausse

University of Bordeaux

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Audrey Di Giorgio

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Maria Duca

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge