Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fabien Delahaye is active.

Publication


Featured researches published by Fabien Delahaye.


American Journal of Physiology-endocrinology and Metabolism | 2009

Maternal prenatal undernutrition alters the response of POMC neurons to energy status variation in adult male rat offspring

Christophe Breton; Marie Amélie Lukaszewski; Pierre Yves Risold; Mihaela Enache; Johann Guillemot; Guillaume Rivière; Fabien Delahaye; Jean Lesage; Isabelle Dutriez-Casteloot; Christine Laborie; Didier Vieau

Epidemiological studies suggest that maternal undernutrition predisposes the offspring to development of energy balance metabolic pathologies in adulthood. Using a model of a prenatal maternal 70% food-restricted diet (FR30) in rats, we evaluated peripheral parameters involved in nutritional regulation, as well as the hypothalamic appetite-regulatory system, in nonfasted and 48-h-fasted adult offspring. Despite comparable glycemia in both groups, mild glucose intolerance, with a defect in glucose-induced insulin secretion, was observed in FR30 animals. They also exhibited hyperleptinemia, despite similar visible fat deposits. Using semiquantitative RT-PCR, we observed no basal difference of hypothalamic proopiomelanocortin (POMC) and neuropeptide Y (NPY) gene expression, but a decrease of the OB-Rb and an increase of insulin receptor mRNA levels, in FR30 animals. These animals also exhibited basal hypercorticosteronemia and a blunted increase of corticosterone in fasted compared with control animals. After fasting, FR30 animals showed no marked reduction of POMC mRNA levels or intensity of beta-endorphin-immunoreactive fiber projections. By contrast, NPY gene expression and immunoreactive fiber intensity increased. FR30 rats also displayed subtle alterations of food intake: body weight-related food intake was higher and light-dark phase rhythm and refeeding time course were modified after fasting. At rest, in the morning, hyperinsulinemia and a striking increase in the number of c-Fos-containing cells in the arcuate nucleus were observed. About 30% of the c-Fos-expressing cells were POMC neurons. Our data suggest that maternal undernutrition differently programs the long-term appetite-regulatory system of offspring, especially the response of POMC neurons to energy status and food intake rhythm.


American Journal of Physiology-endocrinology and Metabolism | 2011

Maternal prenatal undernutrition programs adipose tissue gene expression in adult male rat offspring under high-fat diet

Marie Amélie Lukaszewski; Sylvain Mayeur; Isabelle Fajardy; Fabien Delahaye; Isabelle Dutriez-Casteloot; Valérie Montel; Anne Dickes-Coopman; Christine Laborie; Jean Lesage; Didier Vieau; Christophe Breton

Several studies have shown that maternal undernutrition leading to low birth weight predisposes offspring to the development of metabolic pathologies such as obesity. Using a model of prenatal maternal 70% food restriction diet (FR30) in rat, we evaluated whether postweaning high-fat (HF) diet would amplify the phenotype observed under standard diet. We investigated biological parameters as well as gene expression profile focusing on white adipose tissues (WAT) of adult offspring. FR30 procedure does not worsen the metabolic syndrome features induced by HF diet. However, FR30HF rats displayed catch-up growth to match the body weight of adult control HF animals, suggesting an increase of adiposity while showing hyperleptinemia and a blunted increase of corticosterone. Using quantitative RT-PCR array, we demonstrated that FR30HF rats exhibited leptin and Ob-Rb as well as many peptide precursor and receptor gene expression variations in WAT. We also showed that the expression of genes involved in adipogenesis was modified in FR30HF animals in a depot-specific manner. We observed an opposite variation of STAT3 phosphorylation levels, suggesting that leptin sensitivity is modified in WAT adult FR30 offspring. We demonstrated that 11β-HSD1, 11β-HSD2, GR, and MR genes are coexpressed in WAT and that FR30 procedure modifies gene expression levels, especially under HF diet. In particular, level variation of 11β-HSD2, whose protein expression was detected by Western blotting, may represent a novel mechanism that may affect WAT glucocorticoid sensitivity. Data suggest that maternal undernutrition differently programs the adult offspring WAT gene expression profile that may predispose for altered fat deposition.


Nature Communications | 2014

The meta-epigenomic structure of purified human stem cell populations is defined at cis -regulatory sequences

N. Ari Wijetunga; Fabien Delahaye; Yong Mei Zhao; Aaron Golden; Jessica C. Mar; Francine Einstein; John M. Greally

The mechanism and significance of epigenetic variability in the same cell type between healthy individuals are not clear. Here, we purify human CD34+ hematopoietic stem and progenitor cells (HSPCs) from different individuals and find that there is increased variability of DNA methylation at loci with properties of promoters and enhancers. The variability is especially enriched at candidate enhancers near genes transitioning between silent and expressed states, and encoding proteins with leukocyte differentiation properties. Our findings of increased variability at loci with intermediate DNA methylation values, at candidate “poised” enhancers, and at genes involved in HSPC lineage commitment suggest that CD34+ cell subtype heterogeneity between individuals is a major mechanism for the variability observed. Epigenomic studies performed on cell populations, even when purified, are testing collections of epigenomes, or meta-epigenomes. Our findings show that meta-epigenomic approaches to data analysis can provide insights into cell subpopulation structure.


Nature Communications | 2014

Sexual dimorphism in epigenomic responses of stem cells to extreme fetal growth.

Fabien Delahaye; N. Ari Wijetunga; Hye Heo; Jessica Tozour; Yong Mei Zhao; John M. Greally; Francine Einstein

Extreme fetal growth is associated with increased susceptibility to a range of adult diseases through an unknown mechanism of cellular memory. We tested whether heritable epigenetic processes in long-lived CD34+ hematopoietic stem/progenitor cells (HSPCs) showed evidence for re-programming associated with the extremes of fetal growth. Here we show that both fetal growth restriction and over-growth are associated with global shifts towards DNA hypermethylation, targeting cis-regulatory elements in proximity to genes involved in glucose homeostasis and stem cell function. We find a sexually dimorphic response; intrauterine growth restriction (IUGR) is associated with substantially greater epigenetic dysregulation in males, whereas large for gestational age (LGA) growth predominantly affects females. The findings are consistent with extreme fetal growth interacting with variable fetal susceptibility to influence cellular aging and metabolic characteristics through epigenetic mechanisms, potentially generating biomarkers that could identify infants at higher risk for chronic disease later in life.


Hormone and Metabolic Research | 2013

Perinatal nutrition programs the hypothalamic melanocortin system in offspring.

J.-S. Wattez; Fabien Delahaye; Marie-Amélie Lukaszewski; P.-Y. Risold; Delphine Eberlé; Didier Vieau; Christophe Breton

Epidemiological studies initially suggested that maternal undernutrition leading to low birth weight may predispose for long-lasting energy balance disorders. High birth weight due to maternal obesity or diabetes, inappropriate early postnatal nutrition, and rapid catch-up growth, may also sensitize to increased risk of obesity. As stated by the Developmental Origin of Health and Disease concept, the perinatal perturbation of fetus/neonate nutrient supply might be a crucial determinant of individual programming of body weight set-point. The hypothalamic melanocortin system composed of the melanocortin receptor 4, its agonist α-melanin-stimulating hormone (α-MSH), and its antagonist agouti-related protein (AgRP) is considered as the main central anorexigenic pathway controlling energy homeostasis. Studies in numerous animal models demonstrated that this system is a prime target of developmental programming by maternal nutritional manipulation. In rodents, the perinatal period of life corresponds largely to the period of brain maturation (i. e., melanocortin neuronal differentiation and development of their neural projections). In contrast, these phenomena essentially take place before birth in bigger mammals. Despite these different developmental time windows, altricial and precocial species share several common offspring programming mechanisms. Offspring from malnourished dams present a hypothalamic melanocortin system with a series of alterations: impaired neurogenesis and neuronal functionality, disorganization of feeding pathways, modified glucose sensing, and leptin/insulin resistance. Overall, these alterations may account for the long-lasting dysregulation of energy balance and obesity. Following maternal malnutrition, hormonal and epigenetic mechanisms might be responsible for melanocortin system programming in offspring.


Oncogene | 2017

A pre-neoplastic epigenetic field defect in HCV-infected liver at transcription factor binding sites and polycomb targets

N A Wijetunga; Marien Pascual; Jessica Tozour; Fabien Delahaye; M Alani; M Adeyeye; A W Wolkoff; Amit Verma; John M. Greally

The predisposition of patients with Hepatitis C virus (HCV) infection to hepatocellular carcinoma (HCC) involves components of viral infection, inflammation and time. The development of multifocal, genetically distinct tumours is suggestive of a field defect affecting the entire liver. The molecular susceptibility mediating such a field defect is not understood. One potential mediator of long-term cellular reprogramming is heritable (epigenetic) regulation of transcription, exemplified by DNA methylation. We studied epigenetic and transcriptional changes in HCV-infected livers in comparison with control, uninfected livers and HCC, allowing us to identify pre-neoplastic epigenetic and transcriptional events. We find the HCV-infected liver to have a pattern of acquisition of DNA methylation targeted to candidate enhancers active in liver cells, enriched for the binding sites of the FOXA1, FOXA2 and HNF4A transcription factors. These enhancers can be subdivided into those proximal to genes implicated in liver cancer or to genes involved in stem cell development, the latter distinguished by increased CG dinucleotide density and polycomb-mediated repression, manifested by the additional acquisition of histone H3 lysine 27 trimethylation (H3K27me3). Transcriptional studies on our samples showed that the increased DNA methylation at enhancers was associated with decreased local gene expression, results validated in independent samples from The Cancer Genome Atlas. Pharmacological depletion of H3K27me3 using the EZH2 inhibitor GSK343 in HepG2 cells suppressed cell growth and also revealed that local acquired DNA methylation was not dependent upon the presence of polycomb-mediated repression. The results support a model of HCV infection influencing the binding of transcription factors to cognate sites in the genome, with consequent local acquisition of DNA methylation, and the added repressive influence of polycomb at a subset of CG-dense cis-regulatory sequences. These epigenetic events occur before neoplastic transformation, resulting in what may be a pharmacologically reversible epigenetic field defect in HCV-infected liver.


Aging Cell | 2016

Advanced aging phenotype is revealed by epigenetic modifications in rat liver after in utero malnutrition

Hye Heo; Jessica Tozour; Fabien Delahaye; Yongmei Zhao; Lingguang Cui; Nir Barzilai; Francine Einstein

Adverse environmental exposures of mothers during fetal period predispose offspring to a range of age‐related diseases earlier in life. Here, we set to determine whether a deregulated epigenetic pattern is similar in young animals whose mothers’ nutrition was modulated during fetal growth to that acquired during normal aging in animals. Using a rodent model of maternal undernutrition (UN) or overnutrition (ON), we examined cytosine methylation profiles of liver from young female offspring and compared them to age‐matched young controls and aged (20‐month‐old) animals. HELP‐tagging, a genomewide restriction enzyme and sequencing assay demonstrates that fetal exposure to two different maternal diets is associated with nonrandom dysregulation of methylation levels with profiles similar to those seen in normal aging animals and occur in regions mapped to genes relevant to metabolic diseases and aging. Functional consequences were assessed by gene expression at 9 weeks old with more significant changes at 6 months of age. Early developmental exposures to unfavorable maternal diets result in altered methylation profiles and transcriptional dysregulation in Prkcb, Pc, Ncor2, and Smad3 that is also seen with normal aging. These Notch pathway and lipogenesis genes may be useful for prediction of later susceptibility to chronic disease.


BMC Bioinformatics | 2017

SMITE: an R/Bioconductor package that identifies network modules by integrating genomic and epigenomic information

N. Ari Wijetunga; Andrew D. Johnston; Ryo Maekawa; Fabien Delahaye; Netha Ulahannan; Kami Kim; John M. Greally

BackgroundThe molecular assays that test gene expression, transcriptional, and epigenetic regulation are increasingly diverse and numerous. The information generated by each type of assay individually gives an insight into the state of the cells tested. What should be possible is to add the information derived from separate, complementary assays to gain higher-confidence insights into cellular states. At present, the analysis of multi-dimensional, massive genome-wide data requires an initial pruning step to create manageable subsets of observations that are then used for integration, which decreases the sizes of the intersecting data sets and the potential for biological insights. Our Significance-based Modules Integrating the Transcriptome and Epigenome (SMITE) approach was developed to integrate transcriptional and epigenetic regulatory data without a loss of resolution.ResultsSMITE combines p-values by accounting for the correlation between non-independent values within data sets, allowing genes and gene modules in an interaction network to be assigned significance values. The contribution of each type of genomic data can be weighted, permitting integration of individually under-powered data sets, increasing the overall ability to detect effects within modules of genes. We apply SMITE to a complex genomic data set including the epigenomic and transcriptomic effects of Toxoplasma gondii infection on human host cells and demonstrate that SMITE is able to identify novel subnetworks of dysregulated genes. Additionally, we show that SMITE outperforms Functional Epigenetic Modules (FEM), the current paradigm of using the spin-glass algorithm to integrate gene expression and epigenetic data.ConclusionsSMITE represents a flexible, scalable tool that allows integration of transcriptional and epigenetic regulatory data from genome-wide assays to boost confidence in finding gene modules reflecting altered cellular states.


Diabetologia | 2016

DNA hypermethylation of CD3(+) T cells from cord blood of infants exposed to intrauterine growth restriction.

Lyda Williams; Yoshinori Seki; Fabien Delahaye; Alex Cheng; Mamta Fuloria; Francine Einstein; Maureen J. Charron

Aims/hypothesisIntrauterine growth restriction (IUGR) is associated with increased susceptibility to obesity, metabolic syndrome and type 2 diabetes. Although the mechanisms underlying the developmental origins of metabolic disease are poorly understood, evidence suggests that epigenomic alterations play a critical role. We sought to identify changes in DNA methylation patterns that are associated with IUGR in CD3+ T cells purified from umbilical cord blood obtained from male newborns who were appropriate for gestational age (AGA) or who had been exposed to IUGR.MethodsCD3+ T cells were isolated from cord blood obtained from IUGR and AGA infants. The genome-wide methylation profile in eight AGA and seven IUGR samples was determined using the HELP tagging assay. Validation analysis using targeted bisulfite sequencing and bisulfite massARRAY was performed on the original cohort as well as biological replicates consisting of two AGA and four IUGR infants. The Segway algorithm was used to identify methylation changes within regulatory regions of the genome.ResultsA global shift towards hypermethylation in IUGR was seen compared with AGA (89.8% of 4,425 differentially methylated loci), targeted to regulatory regions of the genome, specifically promoters and enhancers. Pathway analysis identified dysregulation of pathways involved in metabolic disease (type 2 diabetes mellitus, insulin signalling, mitogen-activated protein kinase signalling) and T cell development, regulation and activation (T cell receptor signalling), as well as transcription factors (TCF3, LEF1 and NFATC) that regulate T cells. Furthermore, bump-hunting analysis revealed differentially methylated regions in PRDM16 and HLA-DPB1, genes important for adipose tissue differentiation, stem cell maintenance and function and T cell activation.Conclusions/interpretationOur findings suggest that the alterations in methylation patterns observed in IUGR CD3+ T cells may have functional consequences in targeted genes, regulatory regions and transcription factors. These may serve as biomarkers to identify those at ‘high risk’ for diminished attainment of full health potential who can benefit from early interventions.Access to research materialsHELP tagging data: Gene Expression Omnibus database (GSE77268), scheduled to be released on 25 January 2019.


Nature Communications | 2018

Late-life targeting of the IGF-1 receptor improves healthspan and lifespan in female mice

Kai Mao; Gabriela Farias Quipildor; Tahmineh Tabrizian; Ardijana Novaj; Fangxia Guan; Ryan O. Walters; Fabien Delahaye; Gene B. Hubbard; Yuji Ikeno; Keisuke Ejima; Peng Li; David B. Allison; Hossein Salimi-Moosavi; Pedro J. Beltran; Pinchas Cohen; Nir Barzilai; Derek M. Huffman

Diminished growth factor signaling improves longevity in laboratory models, while a reduction in the somatotropic axis is favorably linked to human aging and longevity. Given the conserved role of this pathway on lifespan, therapeutic strategies, such as insulin-like growth factor-1 receptor (IGF-1R) monoclonal antibodies (mAb), represent a promising translational tool to target human aging. To this end, we performed a preclinical study in 18-mo-old male and female mice treated with vehicle or an IGF-1R mAb (L2-Cmu, Amgen Inc), and determined effects on aging outcomes. Here we show that L2-Cmu preferentially improves female healthspan and increases median lifespan by 9% (P = 0.03) in females, along with a reduction in neoplasms and inflammation (P ≤ 0.05). Thus, consistent with other models, targeting IGF-1R signaling appears to be most beneficial to females. Importantly, these effects could be achieved at advanced ages, suggesting that IGF-1R mAbs could represent a promising therapeutic candidate to delay aging.Reduced IGF-1 signaling increases longevity in many organisms. Here, Mao et al. show that administration of an anti-IGF-1R antibody is well tolerated and delays aging in female mice; importantly, late-life targeting is sufficient to achieve the beneficial effects.

Collaboration


Dive into the Fabien Delahaye's collaboration.

Top Co-Authors

Avatar

Francine Einstein

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Hye Heo

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Yongmei Zhao

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jessica Tozour

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Nir Barzilai

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John M. Greally

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Lingguang Cui

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge