Fabien Mongelard
École normale supérieure de Lyon
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fabien Mongelard.
The EMBO Journal | 2006
Dimitar Angelov; Vladimir A. Bondarenko; Sébastien Almagro; Hervé Menoni; Fabien Mongelard; Fabienne Hans; Flore Mietton; Vasily M. Studitsky; Ali Hamiche; Stefan Dimitrov; Philippe Bouvet
Remodeling machines play an essential role in the control of gene expression, but how their activity is regulated is not known. Here we report that the nuclear protein nucleolin possesses a histone chaperone activity and that this factor greatly enhances the activity of the chromatin remodeling machineries SWI/SNF and ACF. Interestingly, nucleolin is able to induce the remodeling by SWI/SNF of macroH2A, but not of H2ABbd nucleosomes, which are otherwise resistant to remodeling. This new histone chaperone promotes the destabilization of the histone octamer, helping the dissociation of a H2A–H2B dimer, and stimulates the SWI/SNF‐mediated transfer of H2A–H2B dimers. Furthermore, nucleolin facilitates transcription through the nucleosome, which is reminiscent of the activity of the FACT complex. This work defines new functions for histone chaperones in chromatin remodeling and regulation of transcription and explains how nucleolin could act on transcription.
BMC Molecular Biology | 2007
Iva Ugrinova; Karine Monier; Corinne Ivaldi; Marc Thiry; Sébastien Storck; Fabien Mongelard; Philippe Bouvet
BackgroundNucleolin is a major component of the nucleolus, but is also found in other cell compartments. This protein is involved in various aspects of ribosome biogenesis from transcription regulation to the assembly of pre-ribosomal particles; however, many reports suggest that it could also play an important role in non nucleolar functions. To explore nucleolin function in cell proliferation and cell cycle regulation we used siRNA to down regulate the expression of nucleolin.ResultsWe found that, in addition to the expected effects on pre-ribosomal RNA accumulation and nucleolar structure, the absence of nucleolin results in a cell growth arrest, accumulation in G2, and an increase of apoptosis. Numerous nuclear alterations, including the presence of micronuclei, multiple nuclei or large nuclei are also observed. In addition, a large number of mitotic cells showed a defect in the control of centrosome duplication, as indicated by the presence of more than 2 centrosomes per cell associated with a multipolar spindle structure in the absence of nucleolin. This phenotype is very similar to that obtained with the inactivation of another nucleolar protein, B23.ConclusionOur findings uncovered a new role for nucleolin in cell division, and highlight the importance of nucleolar proteins for centrosome duplication.
Nucleic Acids Research | 2012
Rong Cong; Sadhan Das; Iva Ugrinova; Sanjeev Kumar; Fabien Mongelard; Jiemin Wong; Philippe Bouvet
Nucleolin is a multi-functional nucleolar protein that is required for ribosomal RNA gene (rRNA) transcription in vivo, but the mechanism by which nucleolin modulates RNA polymerase I (RNAPI) transcription is not well understood. Nucleolin depletion results in an increase in the heterochromatin mark H3K9me2 and a decrease in H4K12Ac and H3K4me3 euchromatin histone marks in rRNA genes. ChIP-seq experiments identified an enrichment of nucleolin in the ribosomal DNA (rDNA) coding and promoter region. Nucleolin is preferentially associated with unmethylated rRNA genes and its depletion leads to the accumulation of RNAPI at the beginning of the transcription unit and a decrease in UBF along the coding and promoter regions. Nucleolin is able to affect the binding of transcription termination factor-1 on the promoter-proximal terminator T0, thus inhibiting the recruitment of TIP5 and HDAC1 and the establishment of a repressive heterochromatin state. These results reveal the importance of nucleolin for the maintenance of the euchromatin state and transcription elongation of rDNA.
Nucleic Acids Research | 2012
Benoit Moindrot; Benjamin Audit; Petra Klous; Antoine Baker; Claude Thermes; Wouter de Laat; Philippe Bouvet; Fabien Mongelard; Alain Arneodo
Although chromatin folding is known to be of functional importance to control the gene expression program, less is known regarding its interplay with DNA replication. Here, using Circular Chromatin Conformation Capture combined with high-throughput sequencing, we identified megabase-sized self-interacting domains in the nucleus of a human lymphoblastoid cell line, as well as in cycling and resting peripheral blood mononuclear cells (PBMC). Strikingly, the boundaries of those domains coincide with early-initiation zones in every cell types. Preferential interactions have been observed between the consecutive early-initiation zones, but also between those separated by several tens of megabases. Thus, the 3D conformation of chromatin is strongly correlated with the replication timing along the whole chromosome. We furthermore provide direct clues that, in addition to the timing value per se, the shape of the timing profile at a given locus defines its set of genomic contacts. As this timing-related scheme of chromatin organization exists in lymphoblastoid cells, resting and cycling PBMC, this indicates that it is maintained several weeks or months after the previous S-phase. Lastly, our work highlights that the major chromatin changes accompanying PBMC entry into cell cycle occur while keeping largely unchanged the long-range chromatin contacts.
Nucleic Acids Research | 2014
Rong Cong; Sadhan Das; Julien Douet; Jiemin Wong; Marcus Buschbeck; Fabien Mongelard; Philippe Bouvet
The regulation of ribosomal DNA transcription is an important step for the control of cell growth. Epigenetic marks such as DNA methylation and posttranslational modifications of canonical histones have been involved in this regulation, but much less is known about the role of histone variants. In this work, we show that the histone variant macroH2A1 is present on the promoter of methylated rDNA genes. The inhibition of the expression of macroH2A1 in human HeLa and HepG2 cells and in a mouse ES cell line resulted in an up to 5-fold increase of pre-rRNA levels. This increased accumulation of pre-rRNA is accompanied by an increase of the loading of RNA polymerase I and UBF on the rDNA without any changes in the number of active rDNA genes. The inhibition of RNA polymerase I transcription by actinomycin D or by knocking down nucleolin, induces the recruitment of macroH2A1 on the rDNA and the relocalization of macroH2A1 in the nucleolus. Interestingly, the inhibition of rDNA transcription induced by nucleolin depletion is alleviated by the inactivation of macroH2A1. These results demonstrate that macroH2A1 is a new factor involved in the regulation of rDNA transcription.
FEBS Letters | 2005
Rodrigo Pinto; Corinne Ivaldi; Mauricio Reyes; Cécile Marie Doyen; Flore Mietton; Fabien Mongelard; Marco Alvarez; Alfredo Molina; Stefan Dimitrov; Manuel Krauskopf; María Inés Vera; Philippe Bouvet
Adaptation to cold and warm conditions requires dramatic change in gene expression. The acclimatization process of the common carp Cyprinus carpio L. in its natural habitat has been used to study how organisms respond to natural environmental changes. At the cellular level, adaptation to cold condition is accompanied by a dramatic alteration in nucleolar structure and a down regulation of the expression of ribosomal genes. We show that the enrichment of condensed chromatin in winter adapted cells is not correlated with an increase of the heterochromatin marker trimethyl and monomethyl K20H4. However, the expression of the tri methyl K4 H3 and of the variant histone macroH2A is significantly increased during the winter season together with a hypermethylation of CpG residues. Taking into account the properties of macroH2A toward chromatin structure and dynamics and its role in gene repression our data suggest that the increased expression of macroH2A and the hypermethylation of DNA which occurs upon winter‐acclimatization plays a major role for the reorganization of chromatin structure and the regulation of gene expression during the physiological adaptation to a colder environment.
Biochemistry Research International | 2011
Xavier Gaume; Karine Monier; Françoise Argoul; Fabien Mongelard; Philippe Bouvet
Nucleolin is a major nucleolar protein involved in various aspects of ribosome biogenesis such as regulation of polymerase I transcription, pre-RNA maturation, and ribosome assembly. Nucleolin is also present in the nucleoplasm suggesting that its functions are not restricted to nucleoli. Nucleolin possesses, in vitro, chromatin co-remodeler and histone chaperone activities which could explain numerous functions of nucleolin related to the regulation of gene expression. The goal of this report was to investigate the consequences of nucleolin depletion on the dynamics of histones in live cells. Changes in histone dynamics occurring in nucleolin silenced cells were measured by FRAP experiments on eGFP-tagged histones (H2B, H4, and macroH2A). We found that nuclear histone dynamics was impacted in nucleolin silenced cells; in particular we measured higher fluorescence recovery kinetics for macroH2A and H2B but not for H4. Interestingly, we showed that nucleolin depletion also impacted the dissociation constant rate of H2B and H4. Thus, in live cells, nucleolin could play a role in chromatin accessibility by its histone chaperone and co-remodeling activities.
Journal of Physical Chemistry B | 2010
Julien Moukhtar; Cendrine Faivre-Moskalenko; Pascale Milani; Benjamin Audit; Cédric Vaillant; Emeline Fontaine; Fabien Mongelard; Guillaume Lavorel; Philippe St-Jean; Philippe Bouvet; Françoise Argoul; Alain Arneodo
Sequence dependency of DNA intrinsic bending properties has been emphasized as a possible key ingredient to in vivo chromatin organization. We use atomic force microscopy (AFM) in air and liquid to image intrinsically straight (synthetic), uncorrelated (hepatitis C RNA virus) and persistent long-range correlated (human) DNA fragments in various ionic conditions such that the molecules freely equilibrate on the mica surface before being captured in a particular conformation. 2D thermodynamic equilibrium is experimentally verified by a detailed statistical analysis of the Gaussian nature of the DNA bend angle fluctuations. We show that the worm-like chain (WLC) model, commonly used to describe the average conformation of long semiflexible polymers, reproduces remarkably well the persistence length estimates for the first two molecules as consistently obtained from (i) mean square end-to-end distance measurement and (ii) mean projection of the end-to-end vector on the initial orientation. Whatever the operating conditions (air or liquid, concentration of metal cations Mg(2+) and/or Ni(2+)), the persistence length found for the uncorrelated viral DNA underestimates the value obtained for the straight DNA. We show that this systematic difference is the signature of the presence of an uncorrelated structural intrinsic disorder in the hepatitis C virus (HCV) DNA fragment that superimposes on local curvatures induced by thermal fluctuations and that only the entropic disorder depends upon experimental conditions. In contrast, the WLC model fails to describe the human DNA conformations. We use a mean-field extension of the WLC model to account for the presence of long-range correlations (LRC) in the intrinsic curvature disorder of human genomic DNA: the stronger the LRC, the smaller the persistence length. The comparison of AFM imaging of human DNA with LRC DNA simulations confirms that the rather small mean square end-to-end distance observed, particularly for G+C-rich human DNA molecules, more likely results from a large-scale intrinsic curvature due to a persistent distribution of DNA curvature sites than from some increased flexibility.
Cancer Research | 2016
Maud Emmanuelle Gilles; Federica Maione; Mélissande Cossutta; Gilles Carpentier; Laure Caruana; Sylvia Di Maria; Claire Houppe; Damien Destouches; Ksenya Shchors; Christopher Prochasson; Fabien Mongelard; Simona Lamba; Alberto Bardelli; Philippe Bouvet; Anne Couvelard; José Courty; Enrico Giraudo; Ilaria Cascone
Pancreatic cancer is a highly aggressive tumor, mostly resistant to the standard treatments. Nucleolin is overexpressed in cancers and its inhibition impairs tumor growth. Herein, we showed that nucleolin was overexpressed in human specimens of pancreatic ductal adenocarcinoma (PDAC) and that the overall survival significantly increased in patients with low levels of nucleolin. The nucleolin antagonist N6L strongly impaired the growth of primary tumors and liver metastasis in an orthotopic mouse model of PDAC (mPDAC). Similar antitumor effect of N6L has been observed in a highly angiogenic mouse model of pancreatic neuroendocrine tumor RIP-Tag2. N6L significantly inhibited both human and mouse pancreatic cell proliferation and invasion. Notably, the analysis of tumor vasculature revealed a strong increase of pericyte coverage and vessel perfusion both in mPDAC and RIP-Tag2 tumors, in parallel to an inhibition of tumor hypoxia. Nucleolin inhibition directly affected endothelial cell (EC) activation and changed a proangiogenic signature. Among the vascular activators, nucleolin inhibition significantly decreased angiopoietin-2 (Ang-2) secretion and expression in ECs, in the tumor and in the plasma of mPDAC mice. As a consequence of the observed N6L-induced tumor vessel normalization, pre-treatment with N6L efficiently improved chemotherapeutic drug delivery and increased the antitumor properties of gemcitabine in PDAC mice. In conclusion, nucleolin inhibition is a new anti-pancreatic cancer therapeutic strategy that dually blocks tumor progression and normalizes tumor vasculature, improving the delivery and efficacy of chemotherapeutic drugs. Moreover, we unveiled Ang-2 as a potential target and suitable response biomarker for N6L treatment in pancreatic cancer. Cancer Res; 76(24); 7181-93. ©2016 AACR.
FEBS Letters | 2013
Sadhan Das; Rong Cong; Jayasha Shandilya; Parijat Senapati; Benoit Moindrot; Karine Monier; Hélène Delage; Fabien Mongelard; Sanjeev Kumar; Tapas K. Kundu; Philippe Bouvet
Nucleolin and SC35 colocalize by fluorescence microscopy (View interaction)
Collaboration
Dive into the Fabien Mongelard's collaboration.
Jawaharlal Nehru Centre for Advanced Scientific Research
View shared research outputs