Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fabienne Malagnac is active.

Publication


Featured researches published by Fabienne Malagnac.


The EMBO Journal | 2002

An Arabidopsis SET domain protein required for maintenance but not establishment of DNA methylation

Fabienne Malagnac; Lisa Bartee; Judith Bender

Cytosine methylation is critical for correct development and genome stability in mammals and plants. In order to elucidate the factors that control genomic DNA methylation patterning, a genetic screen for mutations that disrupt methylation‐correlated silencing of the endogenous gene PAI2 was conducted in Arabidopsis. This screen yielded seven loss‐of‐function alleles in a SET domain protein with histone H3 Lys9 methyltransferase activity, SUVH4. The mutations conferred reduced cytosine methylation on PAI2, especially in non‐CG sequence contexts, but did not affect methylation on another PAI locus carrying two genes arranged as an inverted repeat. Moreover, an unmethylated PAI2 gene could be methylated de novo in the suvh4 mutant background. These results suggest that SUVH4 is involved in maintenance but not establishment of methylation at particular genomic regions. In contrast, a heterochromatin protein 1 homolog, LHP1, had no effect on PAI methylation.


Genome Biology | 2008

The genome sequence of the model ascomycete fungus Podospora anserina

Eric Espagne; Olivier Lespinet; Fabienne Malagnac; Corinne Da Silva; Olivier Jaillon; Betina M. Porcel; Arnaud Couloux; Jean-Marc Aury; Béatrice Segurens; Julie Poulain; Véronique Anthouard; Sandrine Grossetete; Hamid Khalili; Evelyne Coppin; Michelle Déquard-Chablat; Marguerite Picard; Véronique Contamine; Sylvie Arnaise; Anne Bourdais; Véronique Berteaux-Lecellier; Daniel Gautheret; Ronald P. de Vries; Evy Battaglia; Pedro M. Coutinho; Etienne Danchin; Bernard Henrissat; Riyad El Khoury; Annie Sainsard-Chanet; Antoine Boivin; Bérangère Pinan-Lucarré

BackgroundThe dung-inhabiting ascomycete fungus Podospora anserina is a model used to study various aspects of eukaryotic and fungal biology, such as ageing, prions and sexual development.ResultsWe present a 10X draft sequence of P. anserina genome, linked to the sequences of a large expressed sequence tag collection. Similar to higher eukaryotes, the P. anserina transcription/splicing machinery generates numerous non-conventional transcripts. Comparison of the P. anserina genome and orthologous gene set with the one of its close relatives, Neurospora crassa, shows that synteny is poorly conserved, the main result of evolution being gene shuffling in the same chromosome. The P. anserina genome contains fewer repeated sequences and has evolved new genes by duplication since its separation from N. crassa, despite the presence of the repeat induced point mutation mechanism that mutates duplicated sequences. We also provide evidence that frequent gene loss took place in the lineages leading to P. anserina and N. crassa. P. anserina contains a large and highly specialized set of genes involved in utilization of natural carbon sources commonly found in its natural biotope. It includes genes potentially involved in lignin degradation and efficient cellulose breakdown.ConclusionThe features of the P. anserina genome indicate a highly dynamic evolution since the divergence of P. anserina and N. crassa, leading to the ability of the former to use specific complex carbon sources that match its needs in its natural biotope.


Cell | 1997

A Gene Essential for De Novo Methylation and Development in Ascobolus Reveals a Novel Type of Eukaryotic DNA Methyltransferase Structure

Fabienne Malagnac; Birgit Wendel; Christophe Goyon; Godeleine Faugeron; Denise Zickler; Jean-Luc Rossignol; Mario Noyer-Weidner; Peter Vollmayr; Thomas A. Trautner; Jörn Walter

Molecular mechanisms determining methylation patterns in eukaryotic genomes still remain unresolved. We have characterized, in Ascobolus, a gene for de novo methylation. This novel eukaryotic gene, masc1, encodes a protein that has all motifs of the catalytic domain of eukaryotic C5-DNA-methyltransferases but is unique in that it lacks a regulatory N-terminal domain. The disruption of masc1 has no effect on viability or methylation maintenance but prevents the de novo methylation of DNA repeats, which takes place after fertilization, through the methylation induced premeiotically (MIP) process. Crosses between parents harboring the masc1 disruption are arrested at an early stage of sexual reproduction, indicating that the activity of Masc1, the product of the gene, is crucial in this developmental process.


Nature Communications | 2014

Multiple recent horizontal transfers of a large genomic region in cheese making fungi

Kevin Cheeseman; Jeanne Ropars; Pierre Renault; Joëlle Dupont; Jérôme Gouzy; Antoine Branca; Anne-Laure Abraham; Maurizio Ceppi; Emmanuel Conseiller; Robert Debuchy; Fabienne Malagnac; Anne Goarin; Philippe Silar; Sandrine Lacoste; Erika Sallet; Aaron Bensimon; Tatiana Giraud; Yves Brygoo

While the extent and impact of horizontal transfers in prokaryotes are widely acknowledged, their importance to the eukaryotic kingdom is unclear and thought by many to be anecdotal. Here we report multiple recent transfers of a huge genomic island between Penicillium spp. found in the food environment. Sequencing of the two leading filamentous fungi used in cheese making, P. roqueforti and P. camemberti, and comparison with the penicillin producer P. rubens reveals a 575 kb long genomic island in P. roqueforti—called Wallaby—present as identical fragments at non-homologous loci in P. camemberti and P. rubens. Wallaby is detected in Penicillium collections exclusively in strains from food environments. Wallaby encompasses about 250 predicted genes, some of which are probably involved in competition with microorganisms. The occurrence of multiple recent eukaryotic transfers in the food environment provides strong evidence for the importance of this understudied and probably underestimated phenomenon in eukaryotes.


Eukaryotic Cell | 2008

The Crucial Role of the Pls1 Tetraspanin during Ascospore Germination in Podospora anserina Provides an Example of the Convergent Evolution of Morphogenetic Processes in Fungal Plant Pathogens and Saprobes

Karine Lambou; Fabienne Malagnac; Crystel Barbisan; Didier Tharreau; Marc-Henri Lebrun; Philippe Silar

ABSTRACT Pls1 tetraspanins were shown for some pathogenic fungi to be essential for appressorium-mediated penetration into their host plants. We show here that Podospora anserina, a saprobic fungus lacking appressorium, contains PaPls1, a gene orthologous to known PLS1 genes. Inactivation of PaPls1 demonstrates that this gene is specifically required for the germination of ascospores in P. anserina. These ascospores are heavily melanized cells that germinate under inducing conditions through a specific pore. On the contrary, MgPLS1, which fully complements a ΔPaPls1 ascospore germination defect, has no role in the germination of Magnaporthe grisea nonmelanized ascospores but is required for the formation of the penetration peg at the pore of its melanized appressorium. P. anserina mutants with mutation of PaNox2, which encodes the NADPH oxidase of the NOX2 family, display the same ascospore-specific germination defect as the ΔPaPls1 mutant. Both mutant phenotypes are suppressed by the inhibition of melanin biosynthesis, suggesting that they are involved in the same cellular process required for the germination of P. anserina melanized ascospores. The analysis of the distribution of PLS1 and NOX2 genes in fungal genomes shows that they are either both present or both absent. These results indicate that the germination of P. anserina ascospores and the formation of the M. grisea appressorium penetration peg use the same molecular machinery that includes Pls1 and Nox2. This machinery is specifically required for the emergence of polarized hyphae from reinforced structures such as appressoria and ascospores. Its recurrent recruitment during fungal evolution may account for some of the morphogenetic convergence observed in fungi.


Journal of Biological Chemistry | 2009

An acetyltransferase conferring tolerance to toxic aromatic amine chemicals: molecular and functional studies

Marta Martins; Fernando Rodrigues-Lima; Aazdine Lamouri; Fabienne Malagnac; Philippe Silar; Jean-Marie Dupret

Aromatic amines (AA) are a major class of environmental pollutants that have been shown to have genotoxic and cytotoxic potentials toward most living organisms. Fungi are able to tolerate a diverse range of chemical compounds including certain AA and have long been used as models to understand general biological processes. Deciphering the mechanisms underlying this tolerance may improve our understanding of the adaptation of organisms to stressful environments and pave the way for novel pharmaceutical and/or biotechnological applications. We have identified and characterized two arylamine N-acetyltransferase (NAT) enzymes (PaNAT1 and PaNAT2) from the model fungus Podospora anserina that acetylate a wide range of AA. Targeted gene disruption experiments revealed that PaNAT2 was required for the growth and survival of the fungus in the presence of toxic AA. Functional studies using the knock-out strains and chemically acetylated AA indicated that tolerance of P. anserina to toxic AA was due to the N-acetylation of these chemicals by PaNAT2. Moreover, we provide proof-of-concept remediation experiments where P. anserina, through its PaNAT2 enzyme, is able to detoxify the highly toxic pesticide residue 3,4-dichloroaniline in experimentally contaminated soil samples. Overall, our data show that a single xenobiotic-metabolizing enzyme can mediate tolerance to a major class of pollutants in a eukaryotic species. These findings expand the understanding of the role of xenobiotic-metabolizing enzyme and in particular of NATs in the adaptation of organisms to their chemical environment and provide a basis for new systems for the bioremediation of contaminated soils.


Genetics | 2012

A Non-Mendelian MAPK-Generated Hereditary Unit Controlled by a Second MAPK Pathway in Podospora anserina

Hervé Lalucque; Fabienne Malagnac; Sylvain Brun; Sébastien Kicka; Philippe Silar

The Podospora anserina PaMpk1 MAP kinase (MAPK) signaling pathway can generate a cytoplasmic and infectious element resembling prions. When present in the cells, this C element causes the crippled growth (CG) cell degeneration. CG results from the inappropriate autocatalytic activation of the PaMpk1 MAPK pathway during growth, whereas this cascade normally signals stationary phase. Little is known about the control of such prion-like hereditary units involved in regulatory inheritance. Here, we show that another MAPK pathway, PaMpk2, is crucial at every stage of the fungus life cycle, in particular those controlled by PaMpk1 during stationary phase, which includes the generation of C. Inactivation of the third P. anserina MAPK pathway, PaMpk3, has no effect on the development of the fungus. Mutants of MAPK, MAPK kinase, and MAPK kinase kinase of the PaMpk2 pathway are unable to present CG. This inability likely relies upon an incorrect activation of PaMpk1, although this MAPK is normally phosphorylated in the mutants. In PaMpk2 null mutants, hyphae are abnormal and PaMpk1 is mislocalized. Correspondingly, stationary phase differentiations controlled by PaMpk1 are defective in the mutants of the PaMpk2 cascade. Constitutive activation of the PaMpk2 pathway mimics in many ways its inactivation, including an effect on PaMpk1 localization. Analysis of double and triple mutants inactivated for two or all three MAPK genes undercover new growth and differentiation phenotypes, suggesting overlapping roles. Our data underscore the complex regulation of a prion-like element in a model organism.


PLOS ONE | 2012

Sex in Cheese: Evidence for Sexuality in the Fungus Penicillium roqueforti

Jeanne Ropars; Joëlle Dupont; Eric Fontanillas; Ricardo C. Rodríguez de la Vega; Fabienne Malagnac; Monika Coton; Tatiana Giraud; Manuela López-Villavicencio

Although most eukaryotes reproduce sexually at some moment of their life cycle, as much as a fifth of fungal species were thought to reproduce exclusively asexually. Nevertheless, recent studies have revealed the occurrence of sex in some of these supposedly asexual species. For industrially relevant fungi, for which inoculums are produced by clonal-subcultures since decades, the potentiality for sex is of great interest for strain improvement strategies. Here, we investigated the sexual capability of the fungus Penicillium roqueforti, used as starter for blue cheese production. We present indirect evidence suggesting that recombination could be occurring in this species. The screening of a large sample of strains isolated from diverse substrates throughout the world revealed the existence of individuals of both mating types, even in the very same cheese. The MAT genes, involved in fungal sexual compatibility, appeared to evolve under purifying selection, suggesting that they are still functional. The examination of the recently sequenced genome of the FM 164 cheese strain enabled the identification of the most important genes known to be involved in meiosis, which were found to be highly conserved. Linkage disequilibria were not significant among three of the six marker pairs and 11 out of the 16 possible allelic combinations were found in the dataset. Finally, the detection of signatures of repeat induced point mutations (RIP) in repeated sequences and transposable elements reinforces the conclusion that P. roqueforti underwent more or less recent sex events. In this species of high industrial importance, the induction of a sexual cycle would open the possibility of generating new genotypes that would be extremely useful to diversify cheese products.


Eukaryotic Cell | 2007

PaTrx1 and PaTrx3, Two Cytosolic Thioredoxins of the Filamentous Ascomycete Podospora anserina Involved in Sexual Development and Cell Degeneration

Fabienne Malagnac; Benjamin Klapholz; Philippe Silar

ABSTRACT In various organisms, thioredoxins are known to be involved in the reduction of protein disulfide bonds and in protecting the cell from oxidative stress. Genes encoding thioredoxins were found by searching the complete genome sequence of the filamentous ascomycete Podospora anserina. Among them, PaTrx1, PaTrx2, and PaTrx3 are predicted to be canonical cytosolic proteins without additional domains. Targeted disruption of PaTrx1, PaTrx2, and PaTrx3 shows that PaTrx1 is the major thioredoxin involved in sulfur metabolism. Deletions have no effect on peroxide resistance; however, data show that either PaTrx1 or PaTrx3 is necessary for sexual reproduction and for the development of the crippled growth cell degeneration (CG), processes that also required the PaMpk1 mitogen-activated protein kinase (MAPK) pathway. Since PaTrx1 PaTrx3 mutants show not an enhancement but rather an impairment in CG, it seems unlikely that PaTrx1 and PaTrx3 thioredoxins participate in the inhibition of this MAPK pathway. Altogether, these results underscore a role for thioredoxins in fungal development.


Molecular Microbiology | 1999

Masc2, a gene from Ascobolus encoding a protein with a DNA‐methyltransferase activity in vitro, is dispensable for in vivo methylation

Fabienne Malagnac; Annie Grégoire; Christophe Goyon; Jean-Luc Rossignol; Godeleine Faugeron

We have shown previously that masc1, a gene encoding a putative C5‐DNA‐methyltransferase (MTase), was necessary for the de novo‘Methylation Induced Premeiotically’ (MIP) process and sexual reproduction in Ascobolus, whereas it was dispensable for maintenance methylation. A second MTase gene from Ascobolus, masc2, encodes a protein, Masc2, which possesses the large amino‐terminal part characteristic of eukaryotic maintenance MTases. In vitro assays have shown that Masc2 displays a methylation activity, suggesting that it might be the MTase responsible for maintenance methylation. To check its function in vivo, we engineered a disruption of the masc2 gene. The resulting mutant strains did not exhibit any particular phenotype during either vegetative growth or sexual reproduction. Neither the masc2 mutation nor the double masc1 masc2 mutation had any detectable effect upon the maintenance of the pre‐existing methylation of single gene copies previously subjected to MIP, natural retroelement‐like repeats and tandemly repeated rDNA. The masc2 mutation did not alter either MIP or the other de novo methylation process that operates in vegetative cells. Nor did it impair the meiotic process of methylation transfer. These results suggest that at least a third MTase gene responsible for maintenance and vegetative de novo methylation is present in Ascobolus.

Collaboration


Dive into the Fabienne Malagnac's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Didier Tharreau

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Eric Espagne

University of Paris-Sud

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge