Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fábio D. Nascimento is active.

Publication


Featured researches published by Fábio D. Nascimento.


Dental Materials | 2013

Optimizing dentin bond durability: control of collagen degradation by matrix metalloproteinases and cysteine cathepsins

Leo Tjäderhane; Fábio D. Nascimento; Lorenzo Breschi; A. Mazzoni; Ivarne L.S. Tersariol; Saulo Geraldeli; Arzu Tezvergil-Mutluay; Marcela Carrilho; Ricardo M. Carvalho; Franklin R. Tay; David H. Pashley

OBJECTIVES Contemporary adhesives lose their bond strength to dentin regardless of the bonding system used. This loss relates to the hydrolysis of collagen matrix of the hybrid layers. The preservation of the collagen matrix integrity is a key issue in the attempts to improve the dentin bonding durability. METHODS Dentin contains collagenolytic enzymes, matrix metalloproteinases (MMPs) and cysteine cathepsins, which are responsible for the hydrolytic degradation of collagen matrix in the bonded interface. RESULTS The identities, roles and function of collagenolytic enzymes in mineralized dentin has been gathered only within last 15 years, but they have already been demonstrated to have an important role in dental hard tissue pathologies, including the degradation of the hybrid layer. Identifying responsible enzymes facilitates the development of new, more efficient methods to improve the stability of dentin-adhesive bond and durability of bond strength. SIGNIFICANCE Understanding the nature and role of proteolytic degradation of dentin-adhesive interfaces has improved immensely and has practically grown to a scientific field of its own within only 10 years, holding excellent promise that stable resin-dentin bonds will be routinely available in a daily clinical setting already in a near future.


Dental Materials | 2013

Strategies to prevent hydrolytic degradation of the hybrid layer-A review.

Leo Tjäderhane; Fábio D. Nascimento; Lorenzo Breschi; A. Mazzoni; Ivarne L.S. Tersariol; Saulo Geraldeli; Arzu Tezvergil-Mutluay; Marcela Carrilho; Ricardo M. Carvalho; Franklin R. Tay; David H. Pashley

OBJECTIVE Endogenous dentin collagenolytic enzymes, matrix metalloproteinases (MMPs) and cysteine cathepsins, are responsible for the time-dependent hydrolysis of collagen matrix of hybrid layers. As collagen matrix integrity is essential for the preservation of long-term dentin bond strength, inhibition of endogenous dentin proteases is necessary for durable resin-bonded restorations. METHODS Several tentative approaches to prevent enzyme function have been proposed. Some of them have already demonstrated clinical efficacy, while others need to be researched further before clinical protocols can be proposed. This review will examine both the principles and outcomes of techniques to prevent collagen hydrolysis in dentin-resin interfaces. RESULTS Chlorhexidine, a general inhibitor of MMPs and cysteine cathepsins, is the most tested method. In general, these experiments have shown that enzyme inhibition is a promising approach to improve hybrid layer preservation and bond strength durability. Other enzyme inhibitors, e.g. enzyme-inhibiting monomers, may be considered promising alternatives that would allow more simple clinical application than chlorhexidine. Cross-linking collagen and/or dentin matrix-bound enzymes could render hybrid layer organic matrices resistant to degradation. Alternatively, complete removal of water from the hybrid layer with ethanol wet bonding or biomimetic remineralization should eliminate hydrolysis of both collagen and resin components. SIGNIFICANCE Understanding the function of the enzymes responsible for the hydrolysis of hybrid layer collagen has prompted several innovative approaches to retain hybrid layer integrity and strong dentin bonding. The ultimate goal, prevention of collagen matrix degradation with clinically applicable techniques and commercially available materials may be achievable in several ways.


Journal of Endodontics | 2010

Cysteine Cathepsins in Human Dentin-Pulp Complex

Ivarne L.S. Tersariol; Saulo Geraldeli; Christiane L. Minciotti; Fábio D. Nascimento; Virve Pääkkönen; Marília Trierveiler Martins; Marcela Carrilho; David H. Pashley; Franklin R. Tay; Tuula Salo; Leo Tjäderhane

INTRODUCTION Collagen-degrading matrix metalloproteinases (MMPs) are expressed by odontoblasts and present in dentin. We hypothesized that odontoblasts express other collagen-degrading enzymes such as cysteine cathepsins, and their activity would be present in dentin, because odontoblasts are known to express at least cathepsin D. Effect of transforming growth factor beta (TGF-beta) on cathepsin expression was also analyzed. METHODS Human odontoblasts and pulp tissue were cultured with and without TGF-beta, and cathepsin gene expression was analyzed with DNA microarrays. Dentin cathepsin and MMP activities were analyzed by degradation of respective specific fluorogenic substrates. RESULTS Both odontoblasts and pulp tissue demonstrated a wide range of cysteine cathepsin expression that gave minor responses to TGF-beta. Cathepsin and MMP activities were observed in all dentin samples, with significant negative correlations in their activities with tooth age. CONCLUSIONS These results demonstrate for the first time the presence of cysteine cathepsins in dentin and suggest their role, along with MMPs, in dentin modification with aging.


Journal of Biological Chemistry | 2007

Crotamine Mediates Gene Delivery into Cells through the Binding to Heparan Sulfate Proteoglycans

Fábio D. Nascimento; Mirian A. F. Hayashi; Alexandre Kerkis; Vitor Oliveira; Eduardo B. Oliveira; Gandhi Rádis-Baptista; Helena B. Nader; Tetsuo Yamane; Ivarne L.S. Tersariol; Irina Kerkis

Recently we have shown that crotamine, a toxin from the South American rattlesnake Crotalus durissus terrificus venom, belongs to the family of cell-penetrating peptides. Moreover, crotamine was demonstrated to be a marker of centrioles, of cell cycle, and of actively proliferating cells. Herein we show that this toxin at non-toxic concentrations is also capable of binding electrostatically to plasmid DNA forming DNA-peptide complexes whose stabilities overcome the need for chemical conjugation for carrying nucleic acids into cells. Interestingly, crotamine demonstrates cell specificity and targeted delivery of plasmid DNA into actively proliferating cells both in vitro and in vivo, which distinguishes crotamine from other known natural cell-penetrating peptides. The mechanism of crotamine penetration and cargo delivery into cells was also investigated, showing the involvement of heparan sulfate proteoglycans in the uptake phase, which is followed by endocytosis and peptide accumulation within the acidic endosomal vesicles. Finally, the permeabilization of endosomal membranes induced by crotamine results in the leakage of the vesicles contents to the cell cytosol.


Journal of Dental Research | 2014

Abundance of MMPs and Cysteine Cathepsins in Caries-affected Dentin

C.M.P. Vidal; Leo Tjäderhane; Polliana Mendes Candia Scaffa; Ivarne L.S. Tersariol; David H. Pashley; H.B. Nader; Fábio D. Nascimento; Marcela Carrilho

Degradation of dentin matrix components within caries dentin has been correlated with the activity of host-derived proteases, such as matrix metalloproteases (MMPs) and cysteine cathepsins (CTs). Since this relationship has not been fully established, we hypothesized that the abundance of MMPs and CTs in caries-affected dentin must be higher than in intact dentin. To test this premise, we obtained 5 slices (200 µm) from 5 intact teeth and from 5 caries-affected teeth (1 slice/tooth) and individually incubated them with primary antibodies for CT-B, CT-K, MMP-2, or MMP-9. Negative controls were incubated with pre-immune serum. Specimens were washed and re-incubated with the respective fluorescent secondary antibody. Collagen identification, attained by the autofluorescence capture technique, and protease localization were evaluated by multi-photon confocal microscopy. The images were analyzed with ZEN software, which also quantitatively measured the percentages of collagen and protease distribution in dentin compartments. The abundance of the test enzymes was markedly higher in caries-affected than in intact dentin. CT-B exhibited the highest percentage of co-localization with collagen, followed by MMP-9, MMP-2, and CT-K. The high expression of CTs and MMPs in caries-affected teeth indicates that those host-derived enzymes are intensely involved with caries progression.


Toxicon | 2008

Cytotoxic effects of crotamine are mediated through lysosomal membrane permeabilization

Mirian A. F. Hayashi; Fábio D. Nascimento; Alexandre Kerkis; Vitor Oliveira; Eduardo B. Oliveira; Alexandre Pereira; Gandhi Rádis-Baptista; Helena B. Nader; Tetsuo Yamane; Irina Kerkis; Ivarne L.S. Tersariol

Crotamine, one of the main toxic components of Crotalus durissus terrificus venom, is a small non-enzymatic basic polypeptide, which causes hind limb paralysis and necrosis of muscle cells. It is well-known that several toxins penetrate into the cytosol through endocytosis, although in many cases the mechanism by which this occurs has not been fully investigated. Recently, using low concentrations of crotamine, we demonstrated the uptake of this toxin into actively proliferative cells via endocytosis, an event that ensues crotamine binding to cell membrane heparan sulfate proteoglycans. Thus, crotamine can be regarded as a cell-penetrating peptide that, additionally, has been shown to be able of delivering some biologically active molecules into various cells. Herein, we investigate one of the mechanisms by which crotamine exerts its cytotoxic effects by following its uptake into highly proliferative cells, as CHO-K1 cells. Crotamine accumulation in the acidic endosomal/lysosomal vesicles was observed within 5 in after treatment of these cells with a cytotoxic concentration of this toxin, a value determined here by classical MTT assay. This accumulation caused disruption of lysosomal vesicles accompanied by the leakage of these vesicles contents into the cytosol. This lysosomal lysis also promoted the release of cysteine cathepsin and an increase of caspase activity in the cytoplasm. This chain of events seems to trigger a cell death process. Overall, our data suggest that lysosomes are the primary targets for crotamine cytotoxicity, a proposal corroborated by the correlation between both the kinetics and concentration-dependence of crotamine accumulation in lysosome compartments and the cytotoxic effects of this protein in CHO-K1 cells. Although crotamine is usually regarded as a myotoxin, we observed that intraperitoneal injection of fluorescently labeled crotamine in living mice led to significant and rapid accumulation of this toxin in the cell cytoplasm of several tissues, suggesting that crotamine cytotoxicity might not be restricted to muscle cells.


Journal of Dental Research | 2013

Tooth Bleaching Increases Dentinal Protease Activity

C. Sato; F.A. Rodrigues; D.M. Garcia; C.M.P. Vidal; D.H. Pashley; Leo Tjäderhane; Marcela Carrilho; Fábio D. Nascimento; Ivarne L.S. Tersariol

Hydrogen peroxide is an oxidative agent commonly used for dental bleaching procedures. The structural and biochemical responses of enamel, dentin, and pulp tissues to the in vivo bleaching of human (n = 20) premolars were investigated in this study. Atomic force microscopy (AFM) was used to observe enamel nanostructure. The chemical composition of enamel and dentin was analyzed by infrared spectroscopy (FTIR). The enzymatic activities of dental cathepsin B and matrix metalloproteinases (MMPs) were monitored with fluorogenic substrates. The amount of collagen in dentin was measured by emission of collagen autofluorescence with confocal fluorescence microscopy. The presence of Reactive Oxygen Species (ROS) in the pulp was evaluated with a fluorogenic 2′,7′-dichlorodihydrofluorescein diacetate (DCFDA) probe. Vital bleaching of teeth significantly altered all tested parameters: AFM images revealed a corrosion of surface enamel nanostructure; FTIR analysis showed a loss of carbonate and proteins from enamel and dentin, along with an increase in the proteolytic activity of cathepsin-B and MMPs; and there was a reduction in the autofluorescence of collagen and an increase in both cathepsin-B activity and ROS in pulp tissues. Together, these results indicate that 35% hydrogen peroxide used in clinical bleaching protocols dramatically alters the structural and biochemical properties of dental hard and soft pulp tissue.


Molecular Pharmaceutics | 2012

The Natural Cell-Penetrating Peptide Crotamine Targets Tumor Tissue in Vivo and Triggers a Lethal Calcium-Dependent Pathway in Cultured Cells

Fábio D. Nascimento; Lucie Sancey; Alexandre Pereira; Claire Rome; Vitor Oliveira; Eduardo B. Oliveira; Helena B. Nader; Tetsuo Yamane; Irina Kerkis; Ivarne L.S. Tersariol; Jean-Luc Coll; Mirian A. F. Hayashi

Our goal was to demonstrate the in vivo tumor specific accumulation of crotamine, a natural peptide from the venom of the South American rattlesnake Crotalus durissus terrificus, which has been characterized by our group as a cell penetrating peptide with a high specificity for actively proliferating cells and with a concentration-dependent cytotoxic effect. Crotamine cytotoxicity has been shown to be dependent on the disruption of lysosomes and subsequent activation of intracellular proteases. In this work, we show that the cytotoxic effect of crotamine also involves rapid intracellular calcium release and loss of mitochondrial membrane potential as observed in real time by confocal microscopy. The intracellular calcium overload induced by crotamine was almost completely blocked by thapsigargin. Microfluorimetry assays confirmed the importance of internal organelles, such as lysosomes and the endoplasmic reticulum, as contributors for the intracellular calcium increase, as well as the extracellular medium. Finally, we demonstrate here that crotamine injected intraperitoneally can efficiently target remote subcutaneous tumors engrafted in nude mice, as demonstrated by a noninvasive optical imaging procedure that permits in vivo real-time monitoring of crotamine uptake into tumor tissue. Taken together, our data indicate that the cytotoxic peptide crotamine can be used potentially for a dual purpose: to target and detect growing tumor tissues and to selectively trigger tumor cell death.


Dental Materials | 2015

Can quaternary ammonium methacrylates inhibit matrix MMPs and cathepsins

Arzu Tezvergil-Mutluay; Kelli A. Agee; Annalisa Mazzoni; Ricardo M. Carvalho; Marcela Carrilho; Ivarne L.S. Tersariol; Fábio D. Nascimento; Satoshi Imazato; Leo Tjäderhane; L. Breschi; Franklin R. Tay; David H. Pashley

OBJECTIVE Dentin matrices release ICTP and CTX fragments during collagen degradation. ICTP fragments are known to be produced by MMPs. CTX fragments are thought to come from cathepsin K activity. The purpose of this study was to determine if quaternary methacrylates (QAMs) can inhibit matrix MMPs and cathepsins. METHODS Dentin beams were demineralizated, and dried to constant weight. Beams were incubated with rh-cathepsin B, K, L or S for 24h at pH 7.4 to identify which cathepsins release CTX at neutral pH. Beams were dipped in ATA, an antimicrobial QAM to determine if it can inhibit dentin matrix proteases. Other beams were dipped in another QAM (MDPB) to determine if it produced similar inhibition of dentin proteases. RESULTS Only beams incubated with cathepsin K lost more dry mass than the controls and released CTX. Dentin beams dipped in ATA and incubated for 1 week at pH 7.4, showed a concentration-dependent reduction in weight-loss. There was no change in ICTP release from control values, meaning that ATA did not inhibit MMPs. Media concentrations of CTX fell significantly at 15wt% ATA indicating that ATA inhibits capthesins. Beams dipped in increasing concentrations of MDPB lost progressively less mass, showing that MDPB is a protease-inhibitor. ICTP released from controls or beams exposed to low concentrations were the same, while 5 or 10% MDPB significantly lowered ICTP production. CTX levels were strongly inhibited by 2.5-10% MDPB, indicating that MDPB is a potent inhibitor of both MMPs and cathepsin K. SIGNIFICANCE CTX seems to be released from dentin matrix only by cathepsin K. MMPs and cathepsin K and B may all contribute to matrix degradation.


Chemico-Biological Interactions | 2009

Pre-clinical antitumour evaluation of Biphosphinic Palladacycle Complex in human leukaemia cells

Carlos Rocha Oliveira; Christiano M.V. Barbosa; Fábio D. Nascimento; Camilla S. Lanetzki; Marília B. Meneghin; Flávia E.G. Pereira; Edgar J. Paredes-Gamero; Alice T. Ferreira; Tiago Rodrigues; Mary Luci de Souza Queiroz; Antonio C.F. Caires; Ivarne L.S. Tersariol; Claudia Bincoletto

Previous studies reported by our group have introduced a new antitumoural drug called Biphosphinic Palladacycle Complex (BPC). In this paper we show that BPC causes apoptosis in leukaemia cells (HL60 and Jurkat), but not in normal human lymphocytes. IC(50) values obtained for both cell lines using the MTT and trypan blue exclusion assays 5h after BPC treatment were lower than 8.0 microM. Using metachromatic fluorophore, acridine orange, we observed that BPC elicited lysosomal rupture of leukaemic cells. Furthermore, BPC triggered caspase-3 and caspase-6 activation and apoptosis in cell lines, inducing chromatin condensation, apoptotic bodies, and DNA fragmentation. Interestingly, the lysosomal cathepsin B inhibitor CA074 markedly decreased BPC-induced caspase-3 and caspase-6 activation as well as cell death. Lysosomal BPC-induced membrane destabilisation was not dependent on reactive oxygen species generation, which was consistent with the absence of cellular HL60 and Jurkat membrane lipid peroxidation. We conclude that, following BPC treatment, lysosomal membrane rupture precedes cell death and the apoptotic signalling pathway is initiated by the release of cathepsin B in the cytoplasm of leukaemia cells. As no toxic effects for human lymphocytes were observed, we suggest that BPC is more selective for transformed cells, mainly due to their exacerbated lysosome expression.

Collaboration


Dive into the Fábio D. Nascimento's collaboration.

Top Co-Authors

Avatar

Ivarne L.S. Tersariol

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Helena B. Nader

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David H. Pashley

Georgia Regents University

View shared research outputs
Top Co-Authors

Avatar

Adriana K. Carmona

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Claudia Bincoletto

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar

Antonio C.F. Caires

Universidade de Mogi das Cruzes

View shared research outputs
Top Co-Authors

Avatar

Vitor Oliveira

Federal University of São Paulo

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge