Fabio Fava
University of Bologna
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fabio Fava.
Applied Microbiology and Biotechnology | 2001
Diana Di Gioia; Fabio Fava; Lorenzo Bertin; Leonardo Marchetti
Abstract. Two bacterial strains, Ralstonia sp. LD35 and Pseudomonas putida DSM 1868, were assayed for their ability to degrade the monocyclic aromatic compounds commonly found in olive mill wastewaters (OMWs). The goal was to study the possibility of employing the two strains in the removal of these recalcitrant and toxic compounds from the effluents of anaerobic treatment plants fed with OMWs. At first, the two strains were separately assayed for their ability to degrade a synthetic mixture of nine aromatic acids present in OMWs, both in growing- and resting-cell conditions. Then, due to the complementary activity exhibited by the two strains, a co-culture of the two bacteria was tested under growing-cell conditions for degradation of the same synthetic mixture. Finally, the degradation activity of the co-culture on two fractions was studied. Both fractions one deriving from natural OMWs through reverse osmosis treatment and containing low-molecular weight organic molecules, and the other obtained from an anaerobic lab-scale treatment plant fed with OMWs, were rich in monocyclic aromatic compounds. The co-culture of the two strains was able to biodegrade seven of the nine components of the tested synthetic mix (2, 6-dihydroxybenzoic acid and 3, 4, 5-trimethoxybenzoic acid were the two undegraded compounds). In addition, an efficient biodegrading activity towards several aromatic molecules present in the two natural fractions was demonstrated.
Biotechnology and Bioengineering | 1999
Fabio Fava; Lorenzo Bertin
The possibility of biologically detoxifying a contaminated soil from an Italian dump site containing about 1500 mg/kg (in dry soil) of polychlorinated biphenyls was studied in the laboratory in this work. The soil, which contained indigenous aerobic bacteria capable of growing on biphenyl or on monochlorobenzoic acids at concentration of about 300 CFU per g of air-dried soil, was amended with inorganic nutrients, saturated with water and treated in aerobic 3-L batch slurry reactors (soil suspension at 20% w/v). Either Pseudomonas sp. CPE1 strain, capable of cometabolising low-chlorinated biphenyls into chlorobenzoic acids, or a bacterial co-culture capable of aerobically dechlorinating polychlorobiphenyls constituted by this bacterium and the two chlorobenzoic acid degrading bacteria Pseudomonas sp. CPE2 strain and Alcaligenes sp. CPE3 strain, were used as inocula (final concentration of about 10(8) CFU/mL for each bacterium), in the absence and in the presence of biphenyl (4 g/kg of air dried soil). Significant soil polychlorobiphenyl depletions were observed in all the reactors after 119 days of treatment. The soil inoculation with the sole CPE1 was found to slightly enhance the polychlorobiphenyl depletions (about 20%) and the soil detoxification; the effect was higher in the presence of biphenyl. The use of the polychlorobiphenyl mineralising bacterial co-culture as inoculum resulted in a strong enhancement of the depletions of both the soil polychlorobiphenyls (from 50 to 65%) and of the original soil ecotoxicity. The bacterial biomass inoculated was found to implant into the soil; the higher specialised biomass availability thus reached in the inoculated soil was probably responsible of a more extensive biodegradation of polychlorobiphenyls and therefore of the higher detoxification yields observed in the inoculated reactors. The soil ecotoxicity, measured through two different soil contact assays, i.e., the Lepidium sativum germination test and the Collembola mortality test, was often found to decrease proportionally with the soil polychlorobiphenyl concentration. Copyright 1999 John Wiley & Sons, Inc.
FEMS Microbiology Ecology | 2003
Fabio Fava; Giulio Zanaroli; Lily Y. Young
Abstract Reductive dechlorination of polychlorinated biphenyls (PCBs) pre-existing (at approximately 1 mg kg(-1)) in a marine sediment of Porto Marghera (Venice Lagoon, Italy) was investigated in anaerobic slurries developed in water of the same contaminated site. Some microcosms were pasteurized whereas others were amended with 2-bromoethanesulfonic acid, molybdate or eubacteria-inhibiting antibiotics (without and in the presence of exogenous carbon sources) to preliminarily characterize the microbial populations involved in the process. Bioconversion of highly chlorinated PCBs into tri- and di-chlorinated, ortho-substituted biphenyls was detected from the 11th week of incubation both in the non-amended and in the pasteurized microcosms, where a significant consumption of sulfate and no methane production were observed. Conversely, no significant PCB transformation was detected in the microcosms with molybdate, where no sulfate consumption and a significant methane evolution occurred. Neither was PCB transformation observed in the microcosms supplemented with antibiotics and exogenous carbon sources, where a strong methane evolution and no sulfate consumption were recorded until the 11th week. The addition of exogenous 2,3,4,5,6-pentachlorobiphenyl showed preferential dechlorination at the meta and para positions, and did not significantly influence the onset of pre-existing PCB dechlorination. These results indicate that endogenous PCBs pre-existing in the marine sediment underwent reductive dechlorination. They also suggest that the process was not primed upon 2,3,4,5,6-pentachlorobiphenyl addition, and was likely to be mediated by sulfate-reducing, spore-forming bacteria.
Chemosphere | 2003
Fabio Fava; Silvia Gentilucci; Giulio Zanaroli
The biodegradation of weathered polychlorinated biphenyls (PCBs) (mono and di-chlorinated biphenyls along with PCBs partially ascribed to Aroclor 1242 and 1254) occurring at 1.5-2.5 mg/kg in three different sediments collected from the Porto Marghera contaminated area of Venice Lagoon (Italy) was reported in this study. Strictly anaerobic, slurry microcosms consisting of sediments suspended (at 25% v/v) in a marine salt medium, lagoon water or lagoon water supplemented with NaHCO3 and Na2S were developed and monitored for PCB transformation, sulfate consumption and methane (CH4) production for 6 months. A marked depletion of highly chlorinated biphenyls along with the accumulation of low-chlorinated, often ortho-substituted biphenyls was observed in the biologically active microcosms, where a remarkable consumption of sulfate and/or a significant production of CH4 were also detected. Notably, a more extensive PCB transformation was observed in the microcosms developed with site water (both without or with NaHCO3 plus Na2S), where both the initial concentration of sulfate and sulfate consumption were five fold-higher than in the corresponding microcosms with salt medium. These data indicate that weathered PCBs of the three contaminated sediments of Porto Marghera utilized in this study can undergo reductive dechlorination, probably mediated by indigenous sulfate-reducing and/or methanogenic bacteria.
Journal of Biotechnology | 2001
Lorenzo Bertin; Mauro Majone; Diana Di Gioia; Fabio Fava
An aerobic co-culture, prepared by combining Ralstonia sp. LD35 and Pseudomonas putida DSM1868, was recently found to be capable of extensively degrading many of the hydroxylated and/or methoxylated benzoic, phenylacetic and 3-phenyl-2-propenoic acids occurring in the olive mill wastewaters (OMWs). In the perspective of developing a biotechnological process for the degradation of low-molecular weight (MW) aromatic compounds occurring in the effluents of anaerobic digestors treating OMWs, the capability of this bacterial co-culture of biodegrading a synthetic mix of the above mentioned compounds and the aromatic compounds of an anaerobic OMW-treatment plant effluent in the physiological state of immobilised cells was investigated. Two aerobic fixed-bed biofilm reactors were developed by immobilising the co-culture cells on Manville silica beads and on polyurethane foam cubes. Both supports were found to give rise to a microbiologically stable and biologically active biofilm. The two biofilm reactors were found to be similarly capable of rapidly and completely biodegrading the components of a synthetic mix of nine monocyclic aromatic acids typically present in OMWs and the low-MW aromatic compounds occurring in the anaerobic effluent in batch conditions. However, in the same conditions, the silica bead-packed reactor was found to be more effective in the removal of high-MW phenolic compounds from the anaerobic effluent with respect to the polyurethane cube-packed reactor. These results are encouraging in the perspective of using the co-culture as immobilized cells for developing a continuous biotechnological process for the post-treatment of effluents with low-MW aromatic compounds produced by anaerobic digestors treating OMWs.
Research in Microbiology | 2001
Diana Di Gioia; Lorenzo Bertin; Fabio Fava; Leonardo Marchetti
Two aerobic bacterial strains, a chlorophenol-degrading bacterium characterized in this work as a Ralstonia sp. LD35 on the basis of the sequence of the gene encoding for 16S ribosomal RNA, and Pseudomonas putida DSM 1868, capable of metabolizing 4-methoxybenzoic acid, were tested for their capacity to degrade monocyclic aromatic acids responsible for the toxicity of olive mill wastewaters (OMWs). Both strains possess interesting and complementary degradation capabilities in resting cell conditions: Ralstonia sp. LD35 was found to metabolize 4-hydroxybenzoic, 4-hydroxyphenylacetic, 3,4-dihydroxycinnamic and cinnamic acid, whereas DSM 1868 was capable of metabolizing 4-hydroxy-3-methoxybenzoic, 3,4-dimethoxybenzoic and 4-hydroxy-3,5-dimethoxybenzoic acid, as well as 4-hydroxybenzoic and 4-hydroxyphenylacetic acid. The kinetic parameters describing the growth of the two strains on the same compounds were determined in growing-cell batch conditions, and showed that both strains presented high affinity and high specific growth rates towards all assayed substrates. In addition, the two strains were capable of growing on and extensively biodegrading a mixture of monocyclic aromatic acids commonly found at high concentrations in OMWs, and of growing on a 20% dilution of a natural OMW. All these features make the two strains attractive candidates for the development of a biotechnological process for the biodegradation of aromatic compounds found in OMWs.
Biotechnology and Bioengineering | 2001
Fabio Fava; Diana Di Gioia
The effects of the phytogenic surfactant soya lecithin (SL) on the aerobic biodegradation of polychlorinated biphenyls (PCBs) spiked into a synthetic soil were studied. Soil was spiked with both biphenyl (4 g/kg) and Fenclor 42 (1,000 mg/kg) and treated in aerobic batch slurry-phase microcosms (17.5% w/v). Microcosms were prepared either with or without the exogenous aerobic PCB-dechlorinating bacterial co-culture ECO3 (inoculum:10(8) CFU/mL). In some inoculated microcosms, SL was added at 15 or 30 g/kg. Indigenous bacteria having the capability of metabolizing biphenyl and 2-chlorobenzoic acid were found to develop in the microcosms during the experiment, and were responsible for the significant PCB biodegradation and dechlorination observed in the uninoculated controls. The addition of ECO3 bacteria resulted in only a slight PCB biodegradation increase. In the presence of SL, a higher availability of biphenyl- and chlorobenzoic acid-degrading bacteria and higher PCB biodegradation and dechlorination yields were observed; the effects increased proportionally with the concentration of the applied SL. A significant decrease of soil ecotoxicity was also revealed in SL-supplemented microcosms. At both concentrations, SL was found to be a good carbon source for both the indigenous and ECO3 bacteria, as well as a product capable of enhancing the PCB bioavailability in the microcosms.
Applied and Environmental Microbiology | 2003
Franco Baldi; Milva Pepi; Fabio Fava
ABSTRACT Strains DBVPG 6662 and DBVPG 6739 of Rhodosporidium toruloides, a basidiomycete yeast, grew on thiosulfate as a sulfur source and glucose (2 g liter−1 or 10.75 mM) as a carbon source. DBVPG 6662 has a defective sulfate transport system, whereas DBVPG 6739 barely grew on sulfate. They were compared for the ability to use dibenzothiophene (DBT) and related organic sulfur compounds as sulfur sources. In the presence of glucose as a carbon source and DBT as a sulfur source, strain DBVPG 6662 grew better than DBVPG 6739. In the presence of thiosulfate as a sulfur source, the two yeast strains did not use DBT, DBT-sulfone, benzenesulfonic acid, biphenyl, and fluorene. When the two strains were grown in the presence of glucose, strain DBVPG 6662 transformed 27% of the DBT present (10 μM) at a rate of 0.023 μmol liter−1 h−1 in 36 h. Traces of 2,2′-dihydroxylated biphenyl were transiently accumulated under these conditions. When the same strain was grown on glucose in the presence of a higher concentration of DBT (0.5 g liter−1), mainly in an insoluble form, the whole surface of the DBT crystals was colonized by a thick mycelium. This adherent structure was imaged by confocal microscopy with fluorescent concanavalin A, a lectin that specifically binds glucose and mannose residues. When DBVPG 6662 was grown on glucose in the presence of a commercial emulsion of bitumen, i.e., orimulsion, 68% of the benzo- and dibenzothiophenes and DBTs was removed after 15 days of incubation. The fungus adhered by hyphae to orimulsion droplets. When cultivated in the presence of commercial emulsifier-free fuel oil containing alkylated benzothiophenes and DBTs and having a composition similar to that of orimulsion, strain DBVPG 6662 removed only 11% of the total organic sulfur that occurs in the medium and did not adhere to the oil droplets. These results indicate that strain DBVPG 6662 is able to utilize the organic sulfur of DBT and a large variety of thiophenic compounds that occur extensively in commercial fuel oils by physically adhering to the organic sulfur source.
Applied Microbiology and Biotechnology | 2001
Nelson R. Villarante; Piero M. Armenante; Titos A. O. Quibuyen; Fabio Fava; David Kafkewitz
Abstract. Environmental soil contamination at an industrial site in Marion, Ohio (USA) with tetrachloroethene (perchloroethene, PCE) resulted in residual cis-1, 2-dichloroethene (DCE) contamination that had not declined after more than 15xa0years. Microcosm slurries containing 2.6% soil from this site were supplemented with different electron donors, i.e., individual fatty acids or alcohols. None of the microcosms supported complete DCE dechlorination, unless PCE was added to the microcosm at initiation. The addition of fresh PCE resulted in the dehalogenation of PCE to DCE in the microcosms supplemented with fatty acids having an even number of carbon atoms (acetate, butyrate, and caproate), but not in those with an odd number of carbon atoms (formate, propionate, and valerate), where negligible or no activity was detected. No significant further DCE degradation was observed in any of the microcosms supplied with fatty acids as electron donors. Microcosms supplemented with freshly added PCE bioconverted PCE to DCE and completely dehalogenated both the ex-novo and soil-supplied DCE within 60xa0days, but only if alcohols having an even number of carbon atoms (ethanol or butanol) were also added as electron donors. Odd-numbered alcohols either did not produce dehalogenation (as with methanol) or only dehalogenated PCE to DCE (as with propanol).
Biotechnology and Bioengineering | 2002
Fabio Fava; Alessandro Piccolo