Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fabio Francini is active.

Publication


Featured researches published by Fabio Francini.


Journal of The American Society of Nephrology | 2006

Isolation and Characterization of Multipotent Progenitor Cells from the Bowman’s Capsule of Adult Human Kidneys

Costanza Sagrinati; Giuseppe Stefano Netti; Benedetta Mazzinghi; Elena Lazzeri; Francesco Liotta; Francesca Frosali; Elisa Ronconi; Claudia Meini; Mauro Gacci; Roberta Squecco; Marco Carini; Loreto Gesualdo; Fabio Francini; Enrico Maggi; Francesco Annunziato; Laura Lasagni; Mario Serio; Sergio Romagnani; Paola Romagnani

Regenerative medicine represents a critical clinical goal for patients with ESRD, but the identification of renal adult multipotent progenitor cells has remained elusive. It is demonstrated that in human adult kidneys, a subset of parietal epithelial cells (PEC) in the Bowmans capsule exhibit coexpression of the stem cell markers CD24 and CD133 and of the stem cell-specific transcription factors Oct-4 and BmI-1, in the absence of lineage-specific markers. This CD24+CD133+ PEC population, which could be purified from cultured capsulated glomeruli, revealed self-renewal potential and a high cloning efficiency. Under appropriate culture conditions, individual clones of CD24+CD133+ PEC could be induced to generate mature, functional, tubular cells with phenotypic features of proximal and/or distal tubules, osteogenic cells, adipocytes, and cells that exhibited phenotypic and functional features of neuronal cells. The injection of CD24+CD133+ PEC but not of CD24-CD133- renal cells into SCID mice that had acute renal failure resulted in the regeneration of tubular structures of different portions of the nephron. More important, treatment of acute renal failure with CD24+CD133+ PEC significantly ameliorated the morphologic and functional kidney damage. This study demonstrates the existence and provides the characterization of a population of resident multipotent progenitor cells in adult human glomeruli, potentially opening new avenues for the development of regenerative medicine in patients who have renal diseases.


The FASEB Journal | 2009

Characterization of human adult stem-cell populations isolated from visceral and subcutaneous adipose tissue

Silvana Baglioni; Michela Francalanci; Roberta Squecco; Adriana Lombardi; Giulia Cantini; Roberta Angeli; Stefania Gelmini; Daniele Guasti; Susanna Benvenuti; Francesco Annunziato; Daniele Bani; Francesco Liotta; Fabio Francini; Giuliano Perigli; Mario Serio; Michaela Luconi

Adipose tissue is a dynamic endocrine organ with a central role in metabolism regulation. Functional differences in adipose tissue seem associated with the regional distribution of fat depots, in particular in subcutaneous and visceral omental pads. Here, we report for the first time the isolation of human adipose‐derived adult stem cells from visceral omental and subcutaneous fat (V‐ASCs and S‐ASCs, respectively) from the same subject. Immunophenotyping shows that plastic culturing selects homogeneous cell populations of V‐ASCs and S‐ASCs from the corresponding stromal vascular fractions (SVFs), sharing typical markers of mesenchymal stem cells. Electron microscopy and electrophysiological and real‐time RT‐PCR analyses confirm the mesenchymal stem nature of both V‐ASCs and S‐ASCs, while no significant differences in a limited pattern of cytokine/chemokine expression can be detected. Similar to S‐ASCs, V‐ASCs can differentiate in vitro toward adipogenic, osteogenic, chondrogenic, muscular, and neuronal lineages, as demonstrated by histochemical, immunofluorescence, real‐time RT‐PCR, and electrophysiological analyses, suggesting the multipotency of such adult stem cells. Our data demonstrate that both visceral and subcutaneous adipose tissues are a source of pluripotent stem cells with multigermline potential. However, the visceral rather than the subcutaneous ASC could represent a more appropriate in vitro cell model for investigating the molecular mechanisms implicated in the pathophysiology of metabolic disorders such as obesity.—Baglioni, S., Francalanci, M., Squecco, R., Lombardi, A., Cantini, G., Angeli, R., Gelmini, S., Guasti, D., Benvenuti, S., Annunziato, F., Bani, D., Liotta, F., Francini, F., Perigli, G., Serio, M., Luconi, M. Characterization of human adult stem‐cell populations isolated from visceral and subcutaneous adipose tissue. FASEB J. 23, 3494–3505 (2009). www.fasebj.org


PLOS ONE | 2012

Functional Differences in Visceral and Subcutaneous Fat Pads Originate from Differences in the Adipose Stem Cell

Silvana Baglioni; Giulia Cantini; Giada Poli; Michela Francalanci; Roberta Squecco; Elisa Borgogni; Salvatore Frontera; Gabriella Nesi; Francesco Liotta; Marcello Lucchese; Giuliano Perigli; Fabio Francini; Gianni Forti; Mario Serio; Michaela Luconi

Metabolic pathologies mainly originate from adipose tissue (AT) dysfunctions. AT differences are associated with fat-depot anatomic distribution in subcutaneous (SAT) and visceral omental (VAT) pads. We address the question whether the functional differences between the two compartments may be present early in the adipose stem cell (ASC) instead of being restricted to the mature adipocytes. Using a specific human ASC model, we evaluated proliferation/differentiation of ASC from abdominal SAT-(S-ASC) and VAT-(V-ASC) paired biopsies in parallel as well as the electrophysiological properties and functional activity of ASC and their in vitro-derived adipocytes. A dramatic difference in proliferation and adipogenic potential was observed between the two ASC populations, S-ASC having a growth rate and adipogenic potential significantly higher than V-ASC and giving rise to more functional and better organized adipocytes. To our knowledge, this is the first comprehensive electrophysiological analysis of ASC and derived-adipocytes, showing electrophysiological properties, such as membrane potential, capacitance and K+-current parameters which confirm the better functionality of S-ASC and their derived adipocytes. We document the greater ability of S-ASC-derived adipocytes to secrete adiponectin and their reduced susceptibility to lipolysis. These features may account for the metabolic differences observed between the SAT and VAT. Our findings suggest that VAT and SAT functional differences originate at the level of the adult ASC which maintains a memory of its fat pad of origin. Such stem cell differences may account for differential adipose depot susceptibility to the development of metabolic dysfunction and may represent a suitable target for specific therapeutic approaches.


Journal of Cell Science | 2009

Regulation of transient receptor potential canonical channel 1 (TRPC1) by sphingosine 1-phosphate in C2C12 myoblasts and its relevance for a role of mechanotransduction in skeletal muscle differentiation.

Lucia Formigli; Chiara Sassoli; Roberta Squecco; Francesca Bini; Maria Martinesi; Flaminia Chellini; Giorgia Luciani; Francesca Sbrana; Sandra Zecchi-Orlandini; Fabio Francini; Elisabetta Meacci

Transient receptor potential canonical (TRPC) channels provide cation and Ca2+ entry pathways, which have important regulatory roles in many physio-pathological processes, including muscle dystrophy. However, the mechanisms of activation of these channels remain poorly understood. Using siRNA, we provide the first experimental evidence that TRPC channel 1 (TRPC1), besides acting as a store-operated channel, represents an essential component of stretch-activated channels in C2C12 skeletal myoblasts, as assayed by whole-cell patch-clamp and atomic force microscopic pulling. The channels activity and stretch-induced Ca2+ influx were modulated by sphingosine 1-phosphate (S1P), a bioactive lipid involved in satellite cell biology and tissue regeneration. We also found that TRPC1 was functionally assembled in lipid rafts, as shown by the fact that cholesterol depletion resulted in the reduction of transmembrane ion current and conductance. Association between TRPC1 and lipid rafts was increased by formation of stress fibres, which was elicited by S1P and abolished by treatment with the actin-disrupting dihydrocytochalasin B, suggesting a role for cytoskeleton in TRPC1 membrane recruitment. Moreover, TRPC1 expression was significantly upregulated during myogenesis, especially in the presence of S1P, implicating a crucial role for TRPC1 in myoblast differentiation. Collectively, these findings may offer new tools for understanding the role of TRPC1 and sphingolipid signalling in skeletal muscle regeneration and provide new therapeutic approaches for skeletal muscle disorders.


The Journal of Physiology | 1992

Tension transients during steady lengthening of tetanized muscle fibres of the frog.

Gabriella Piazzesi; Fabio Francini; Marco Linari; Vincenzo Lombardi

1. Steady lengthenings at different velocities (0.02‐1.6 microns/s per half‐sarcomere, temperature 2.5‐5.5 degrees C) were imposed on isolated frog muscle fibres at the plateau of the isometric tetanus (tension T0). When tension during lengthening had attained a steady value (Ti), which varied from about 1.5 to about 2 times T0 depending on lengthening velocity, tension transients were elicited by applying step length changes of different amplitudes. The change in length of a selected segment, close to the end of the fibre connected to the force transducer, was controlled by means of a striation follower. 2. The instantaneous plots of tension versus the length change during the step itself showed that at the high forces developed during steady lengthening, as at the plateau of isometric tetanus, the elasticity of the fibre was almost undamped in the whole range of lengthening velocities used. 3. The tension transient elicited by step length changes imposed in isometric conditions exhibited the characteristic four phases described previously: following the tension change simultaneous with the step (phase 1), there was a quick partial recovery (phase 2, the speed of which increased going from the largest step stretch to the largest step release), a subsequent pause or inversion in recovery (phase 3) and finally a slower approach to the tension before the step (phase 4). 4. In the region of small steps the plot of the extreme tension attained during the step (T1) versus step amplitude appeared more linear during steady lengthening than in isometric conditions and deviated progressively from linearity with increase in the size of step releases. The amount of instantaneous shortening necessary to drop tension to zero (Y0), measured by the abscissa intercept of the straight line drawn through T1 points for small steps, was about 4.1 nm per half‐sarcomere in isometric conditions and 5.4 nm per half‐sarcomere during lengthening at low speed (0.09 microns/s per half‐sarcomere, Ti about 1.6 T0). Taken altogether this indicates, in agreement with previous work, that force enhancement during steady lengthening is due to increase in both number and extension of attached cross‐bridges. During lengthening at high speed (0.8 microns/s per half‐sarcomere), further enhancement in steady force (Ti about 1.9 T0) was accompanied by increase of Y0 to 6.3 nm per half‐sarcomere, indicating that increase in lengthening velocity exclusively produces increase in cross‐bridge extension.(ABSTRACT TRUNCATED AT 400 WORDS)


Journal of Cellular Physiology | 2007

Cytoskeleton/stretch-activated ion channel interaction regulates myogenic differentiation of skeletal myoblasts.

Lucia Formigli; Elisabetta Meacci; Chiara Sassoli; Roberta Squecco; Daniele Nosi; Flaminia Chellini; Fabio Naro; Fabio Francini; Sandra Zecchi-Orlandini

In the present study, we investigated the functional interaction between stress fibers (SFs) and stretch‐activated channels (SACs) and its possible role in the regulation of myoblast differentiation induced by switch to differentiation culture in the presence or absence of sphingosine 1‐phosphate. It was found that there was a clear temporal correlation between SF formation and SAC activation in differentiating C2C12 myoblasts. Inhibition of actin polymerization with the specific Rho kinase inhibitor Y‐27632, significantly decreased SAC sensitivity in these cells, suggesting a role for Rho‐dependent actin remodeling in the regulation of the channel opening. The alteration of cytoskeletal/SAC functional correlation had also deleterious effects on myogenic differentiation of C2C12 cells as judged by combined confocal immunofluorescence, biochemical and electrophysiological analyses. Indeed, the treatment with Y‐27632 or with DHCB, an actin disrupting agent, inhibited the expression of the myogenic markers (myogenin and sarcomeric proteins) and myoblast‐myotube transition. The treatment with the channel blocker, GdCl3, also affected myogenesis in these cells. It impaired, in fact, myoblast phenotypic maturation (i.e., reduced the expression of α‐sarcomeric actin and skeletal myosin and the activity of creatine kinase) but did not modify promoter activity and protein expression levels of myogenin. The results of this study, together with being in agreement with the general idea that cytoskeletal remodeling is essential for muscle differentiation, describe a novel pathway whereby the formation of SFs and their contraction, generate a mechanical tension to the plasma membrane, activate SACs and trigger Ca2+‐dependent signals, thus influencing the phenotypic maturation of myoblasts. J. Cell. Physiol. 211: 296–306, 2007.


Journal of Cell Science | 2005

Sphingosine 1-phosphate induces cytoskeletal reorganization in C2C12 myoblasts: physiological relevance for stress fibres in the modulation of ion current through stretch-activated channels

Lucia Formigli; Elisabetta Meacci; Chiasa Sassoli; Flaminia Chellini; Rosalba Giannini; Franco Quercioli; Bruno Tiribilli; Roberta Squecco; Paola Bruni; Fabio Francini; Sandra Zecchi-Orlandini

Sphingosine 1-phosphate (S1P) is a bioactive lipid that is abundantly present in the serum and mediates multiple biological responses. With the aim of extending our knowledge on the role played by S1P in the regulation of cytoskeletal reorganization, native as well as C2C12 myoblasts stably transfected with green fluorescent protein (GFP)-tagged α- and β-actin constructs were stimulated with S1P (1 μM) and observed under confocal and multiphoton microscopes. The addition of S1P induced the appearance of actin stress fibres and focal adhesions through Rho- and phospholipase D (PLD)-mediated pathways. The cytoskeletal response was dependent on the extracellular action of S1P through its specific surface receptors, since the intracellular delivery of the sphingolipid by microinjection was unable to modify the actin cytoskeletal assembly. Interestingly, it was revealed by whole-cell patch-clamp that S1P-induced stress fibre formation was associated with increased ion currents and conductance through stretch-activated channels (SACs), thereby suggesting a possible regulatory role for organized actin in channel sensitivity. Experiments aimed at stretching the plasma membrane of C2C12 cells, using the cantilever of an atomic force microscope, indicated that there was a Ca2+ influx through putative SACs. In conclusion, the present data suggest novel mechanisms of S1P signalling involving actin cytoskeletal reorganization and Ca2+ elevation through SACs that might influence myoblastic functions.


Pain | 1975

Cutaneous pain threshold changes after sympathetic block in reflex dystrophies

Paolo Procacci; Fabio Francini; Massimo Zoppi; Marco Maresca

Abstract In a group of 30 subjects suffering from sympathetic reflex dystrophies of the limbs, the sympathetic ganglia of the affected side were blocked with a local anesthetic. Using an original method, we measured the cutaneous pain threshold before the block and at prefixed intervals after the block during a period of 2 days. In all subjects the cutaneous pain threshold showed damped oscillations both in the limb ipsilateral to the block and in the contralateral one. The analysis of these oscillations showed: (a) that the sympathetic control of the cutaneous pain threshold may be exerted through a negative feedback loop (skin‐afferent input‐CNS‐sympathetic output‐skin); (b) that the afferent discharge of a limb controls the contralateral sympathetic output through central mechanisms.


Cellular and Molecular Life Sciences | 2009

Sphingosine 1-phosphate induces differentiation of adipose tissue-derived mesenchymal stem cells towards smooth muscle cells

Paola Nincheri; Paola Luciani; Roberta Squecco; Chiara Donati; Caterina Bernacchioni; L. Borgognoni; Giorgia Luciani; Susanna Benvenuti; Fabio Francini; Paola Bruni

Abstract.Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid which regulates multiple biological parameters in a number of cell types, including stem cells. Here we report, for the first time, that S1P dose-dependently stimulates differentiation of adipose tissue-derived mesenchymal stem cells (ASMC) towards smooth muscle cells. Indeed, S1P not only induced the expression of smooth muscle cell-specific proteins such as α-smooth muscle actin (αSMA) and transgelin, but also profoundly affected ASMC morphology by enhancing cytoskeletal F-actin assembly, which incorporated αSMA. More importantly, S1P challenge was responsible for the functional appearance of Ca2+ currents, characteristic of differentiated excitable cells such as smooth muscle cells. By employing various agonists and antagonists to inhibit S1P receptor subtypes, S1P2 turned out to be critical for the pro-differentiating effect of S1P, while S1P3 appeared to play a secondary role. This study individuates an important role of S1P in AMSC which can be exploited to favour vascular regeneration.


American Journal of Physiology-cell Physiology | 2008

Role for stress fiber contraction in surface tension development and stretch-activated channel regulation in C2C12 myoblasts

Francesca Sbrana; Chiara Sassoli; Elisabetta Meacci; Daniele Nosi; Roberta Squecco; Ferdinando Paternostro; Bruno Tiribilli; Sandra Zecchi-Orlandini; Fabio Francini; Lucia Formigli

Membrane-cytoskeleton interaction regulates transmembrane currents through stretch-activated channels (SACs); however, the mechanisms involved have not been tested in living cells. We combined atomic force microscopy, confocal immunofluorescence, and patch-clamp analysis to show that stress fibers (SFs) in C2C12 myoblasts behave as cables that, tensed by myosin II motor, activate SACs by modifying the topography and the viscoelastic (Youngs modulus and hysteresis) and electrical passive (membrane capacitance, C(m)) properties of the cell surface. Stimulation with sphingosine 1-phosphate to elicit SF formation, the inhibition of Rho-dependent SF formation by Y-27632 and of myosin II-driven SF contraction by blebbistatin, showed that not SF polymerization alone but the generation of tensional forces by SF contraction were involved in the stiffness response of the cell surface. Notably, this event was associated with a significant reduction in the amplitude of the cytoskeleton-mediated corrugations in the cell surface topography, suggesting a contribution of SF contraction to plasma membrane stretching. Moreover, C(m), used as an index of cell surface area, showed a linear inverse relationship with cell stiffness, indicating participation of the actin cytoskeleton in plasma membrane remodeling and the ability of SF formation to cause internalization of plasma membrane patches to reduce C(m) and increase membrane tension. SF contraction also increased hysteresis. Together, these data provide the first experimental evidence for a crucial role of SF contraction in SAC activation. The related changes in cell viscosity may prevent SAC from abnormal activation.

Collaboration


Dive into the Fabio Francini's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bruno Tiribilli

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge