Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fabio Isa is active.

Publication


Featured researches published by Fabio Isa.


Scientific Reports | 2013

Perfect crystals grown from imperfect interfaces

Claudiu V. Falub; Mojmír Meduňa; D. Chrastina; Fabio Isa; Anna Marzegalli; Thomas Kreiliger; A. G. Taboada; Giovanni Isella; Leo Miglio; Alex Dommann; Hans von Känel

The fabrication of advanced devices increasingly requires materials with different properties to be combined in the form of monolithic heterostructures. In practice this means growing epitaxial semiconductor layers on substrates often greatly differing in lattice parameters and thermal expansion coefficients. With increasing layer thickness the relaxation of misfit and thermal strains may cause dislocations, substrate bowing and even layer cracking. Minimizing these drawbacks is therefore essential for heterostructures based on thick layers to be of any use for device fabrication. Here we prove by scanning X-ray nanodiffraction that mismatched Ge crystals epitaxially grown on deeply patterned Si substrates evolve into perfect structures away from the heavily dislocated interface. We show that relaxing thermal and misfit strains result just in lattice bending and tiny crystal tilts. We may thus expect a new concept in which continuous layers are replaced by quasi-continuous crystal arrays to lead to dramatically improved physical properties.


Advanced Materials | 2016

Highly Mismatched, Dislocation-Free SiGe/Si Heterostructures

Fabio Isa; Marco Salvalaglio; Yadira Arroyo Rojas Dasilva; Mojmír Meduňa; Michael Barget; Arik Jung; Thomas Kreiliger; Giovanni Isella; Rolf Erni; Fabio Pezzoli; E. Bonera; Philippe Niedermann; P. Gröning; F. Montalenti; Hans von Känel

Defect-free mismatched heterostructures on Si substrates are produced by an innovative strategy. The strain relaxation is engineered to occur elastically rather than plastically by combining suitable substrate patterning and vertical crystal growth with compositional grading. Its validity is proven both experimentally and theoretically for the pivotal case of SiGe/Si(001).


ACS Applied Materials & Interfaces | 2015

Engineered Coalescence by Annealing 3D Ge Microstructures into High-Quality Suspended Layers on Si.

Marco Salvalaglio; Roberto Bergamaschini; Fabio Isa; Andrea Scaccabarozzi; Giovanni Isella; Rainer Backofen; Axel Voigt; F. Montalenti; Giovanni Capellini; Thomas Schroeder; Hans von Känel; Leo Miglio

The move from dimensional to functional scaling in microelectronics has led to renewed interest toward integration of Ge on Si. In this work, simulation-driven experiments leading to high-quality suspended Ge films on Si pillars are reported. Starting from an array of micrometric Ge crystals, the film is obtained by exploiting their temperature-driven coalescence across nanometric gaps. The merging process is simulated by means of a suitable surface-diffusion model within a phase-field approach. The successful comparison between experimental and simulated data demonstrates that the morphological evolution is driven purely by the lowering of surface-curvature gradients. This allows for fine control over the final morphology to be attained. At fixed annealing time and temperature, perfectly merged films are obtained from Ge crystals grown at low temperature (450 °C), whereas some void regions still persist for crystals grown at higher temperature (500 °C) due to their different initial morphology. The latter condition, however, looks very promising for possible applications. Indeed, scanning tunneling electron microscopy and high-resolution transmission electron microscopy analyses show that, at least during the first stages of merging, the developing film is free from threading dislocations. The present findings, thus, introduce a promising path to integrate Ge layers on Si with a low dislocation density.


Journal of Applied Physics | 2016

GaAs/Ge crystals grown on Si substrates patterned down to the micron scale

A. G. Taboada; Mojmír Meduňa; Marco Salvalaglio; Fabio Isa; Thomas Kreiliger; Claudiu V. Falub; E. Barthazy Meier; E. Müller; Leo Miglio; Giovanni Isella; H. von Känel

Monolithic integration of III-V compounds into high density Si integrated circuits is a key technological challenge for the next generation of optoelectronic devices. In this work, we report on the metal organic vapor phase epitaxy growth of strain-free GaAs crystals on Si substrates patterned down to the micron scale. The differences in thermal expansion coefficient and lattice parameter are adapted by a 2-μm-thick intermediate Ge layer grown by low-energy plasma enhanced chemical vapor deposition. The GaAs crystals evolve during growth towards a pyramidal shape, with lateral facets composed of {111} planes and an apex formed by {137} and (001) surfaces. The influence of the anisotropic GaAs growth kinetics on the final morphology is highlighted by means of scanning and transmission electron microscopy measurements. The effect of the Si pattern geometry, substrate orientation, and crystal aspect ratio on the GaAs structural properties was investigated by means of high resolution X-ray diffraction. The th...


APL Materials | 2013

Onset of vertical threading dislocations in Si1-xGex/Si (001) at a critical Ge concentration

Fabio Isa; Anna Marzegalli; A. G. Taboada; Claudiu V. Falub; Giovanni Isella; F. Montalenti; Hans von Känel; Leo Miglio

We show that the Ge concentration in Si1−xGex alloys grown under strong out-of-equilibrium conditions determines the character of the population of threading dislocations (TDs). Above a critical value x ∼ 0.25 vertical TDs dominate over the common slanted ones. This is demonstrated by exploiting a statistically relevant analysis of TD orientation in micrometer-sized Si1−xGex crystals, deposited on deeply patterned Si(001) substrates. Experiments involving an abrupt change of composition in the middle of the crystals clarify the role of misfit-strain versus chemical composition in favoring the vertical orientation of TDs. A scheme invoking vacancy-mediated climb mechanism is proposed to rationalize the observed behavior.


Journal of Applied Physics | 2016

Investigation of interface abruptness and In content in (In,Ga)N/GaN superlattices

C. Chèze; M. Siekacz; Fabio Isa; Bernd Jenichen; Felix Feix; Jakov Buller; Tobias Schulz; M. Albrecht; C. Skierbiszewski; Raffaella Calarco; H. Riechert

We investigate designed InN/GaN superlattices (SLs) grown by plasma-assisted molecular beam epitaxy on c-plane GaN templates in situ by line-of-sight quadrupole mass spectroscopy and laser reflectivity, and ex situ by scanning transmission electron microscopy, X-ray diffraction, and photoluminescence (PL). The structural methods reveal concordantly the different interface abruptness of SLs resulting from growth processes with different parameters. Particularly crucial for the formation of abrupt interfaces is the Ga to N ratio that has to be bigger than 1 during the growth of the GaN barriers, as Ga-excess GaN growth aims at preventing the unintentional incorporation of In accumulated on the growth surface after the supply of InN, that extends the (In,Ga)N quantum well (QW) thickness. Essentially, even with GaN barriers grown under Ga-excess yielding to 1 monolayer (ML) thick QWs, there is a real discrepancy between the designed binary InN and the actual ternary (In,Ga)N ML thick QWs revealed by the above...


Applied Physics Letters | 2016

Disentangling nonradiative recombination processes in Ge micro-crystals on Si substrates

Fabio Pezzoli; A Giorgioni; Kevin Gallacher; Fabio Isa; Paolo Biagioni; Ross W. Millar; E. Gatti; E. Grilli; E. Bonera; Giovanni Isella; Douglas J. Paul; Leo Miglio

We address nonradiative recombination pathways by leveraging surface passivation and dislocation management in μm-scale arrays of Ge crystals grown on deeply patterned Si substrates. The time decay photoluminescence (PL) at cryogenic temperatures discloses carrier lifetimes approaching 45 ns in band-gap engineered Ge micro-crystals. This investigation provides compelling information about the competitive interplay between the radiative band-edge transitions and the trapping of carriers by dislocations and free surfaces. Furthermore, an in-depth analysis of the temperature dependence of the PL, combined with capacitance data and finite difference time domain modeling, demonstrates the effectiveness of GeO2 in passivating the surface of Ge and thus in enhancing the room temperature PL emission.


Semiconductor Science and Technology | 2015

Three-dimensional Ge/SiGe multiple quantum wells deposited on Si(001) and Si(111) patterned substrates

Fabio Isa; Fabio Pezzoli; Giovanni Isella; Mojmír Meduňa; Claudiu V. Falub; E. Müller; Thomas Kreiliger; A. G. Taboada; H. von Känel; Leo Miglio

In this work we address three-dimensional heterojunctions, demonstrating that photoluminescence from defect-free, Ge/SiGe multiple quantum well (MQW) micro-crystals grown on deeply patterned Si(001) and Si(111) substrates exhibit similar radiative intensity and analogous spectral shape.


Journal of Applied Crystallography | 2016

Lattice bending in three-dimensional Ge microcrystals studied by X-ray nanodiffraction and modelling

Mojmír Meduňa; Claudiu V. Falub; Fabio Isa; Anna Marzegalli; D. Chrastina; Giovanni Isella; Leo Miglio; Alex Dommann; Hans von Kaenel

Extending the functionality of ubiquitous Si-based microelectronic devices often requires combining materials with different lattice parameters and thermal expansion coefficients. In this paper, scanning X-ray nanodiffraction is used to map the lattice bending produced by thermal strain relaxation in heteroepitaxial Ge microcrystals of various heights grown on high aspect ratio Si pillars. The local crystal lattice tilt and curvature are obtained from experimental three-dimensional reciprocal space maps and compared with diffraction patterns simulated by means of the finite element method. The simulations are in good agreement with the experimental data for various positions of the focused X-ray beam inside a Ge microcrystal. Both experiment and simulations reveal that the crystal lattice bending induced by thermal strain relaxation vanishes with increasing Ge crystal height.


Microscopy and Microanalysis | 2015

Burgers Vector Analysis of Vertical Dislocations in Ge Crystals by Large-Angle Convergent Beam Electron Diffraction

H. Groiss; Martin Glaser; Anna Marzegalli; Fabio Isa; Giovanni Isella; Leo Miglio; F. Schäffler

By transmission electron microscopy with extended Burgers vector analyses, we demonstrate the edge and screw character of vertical dislocations (VDs) in novel SiGe heterostructures. The investigated pillar-shaped Ge epilayers on prepatterned Si(001) substrates are an attempt to avoid the high defect densities of lattice mismatched heteroepitaxy. The Ge pillars are almost completely strain-relaxed and essentially defect-free, except for the rather unexpected VDs. We investigated both pillar-shaped and unstructured Ge epilayers grown either by molecular beam epitaxy or by chemical vapor deposition to derive a general picture of the underlying dislocation mechanisms. For the Burgers vector analysis we used a combination of dark field imaging and large-angle convergent beam electron diffraction (LACBED). With LACBED simulations we identify ideally suited zeroth and second order Laue zone Bragg lines for an unambiguous determination of the three-dimensional Burgers vectors. By analyzing dislocation reactions we confirm the origin of the observed types of VDs, which can be efficiently distinguished by LACBED. The screw type VDs are formed by a reaction of perfect 60° dislocations, whereas the edge types are sessile dislocations that can be formed by cross-slips and climbing processes. The understanding of these origins allows us to suggest strategies to avoid VDs.

Collaboration


Dive into the Fabio Isa's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge