Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fabio Moda is active.

Publication


Featured researches published by Fabio Moda.


The New England Journal of Medicine | 2014

Prions in the Urine of Patients with Variant Creutzfeldt–Jakob Disease

Fabio Moda; Pierluigi Gambetti; Silvio Notari; Luis Concha-Marambio; Marcella Catania; Kyung Won Park; Emanuela Maderna; Silvia Suardi; Stéphane Haïk; Jean Philippe Brandel; James Ironside; Richard Knight; Fabrizio Tagliavini; Claudio Soto

BACKGROUND Prions, the infectious agents responsible for transmissible spongiform encephalopathies, consist mainly of the misfolded prion protein (PrP(Sc)). The unique mechanism of transmission and the appearance of a variant form of Creutzfeldt-Jakob disease, which has been linked to consumption of prion-contaminated cattle meat, have raised concerns about public health. Evidence suggests that variant Creutzfeldt-Jakob disease prions circulate in body fluids from people in whom the disease is silently incubating. METHODS To investigate whether PrP(Sc) can be detected in the urine of patients with variant Creutzfeldt-Jakob disease, we used the protein misfolding cyclic amplification (PMCA) technique to amplify minute quantities of PrP(Sc), enabling highly sensitive detection of the protein. We analyzed urine samples from several patients with various transmissible spongiform encephalopathies (variant and sporadic Creutzfeldt-Jakob disease and genetic forms of prion disease), patients with other degenerative or nondegenerative neurologic disorders, and healthy persons. RESULTS PrP(Sc) was detectable only in the urine of patients with variant Creutzfeldt-Jakob disease and had the typical electrophoretic profile associated with this disease. PrP(Sc) was detected in 13 of 14 urine samples obtained from patients with variant Creutzfeldt-Jakob disease and in none of the 224 urine samples obtained from patients with other neurologic diseases and from healthy controls, resulting in an estimated sensitivity of 92.9% (95% confidence interval [CI], 66.1 to 99.8) and a specificity of 100.0% (95% CI, 98.4 to 100.0). The PrP(Sc) concentration in urine calculated by means of quantitative PMCA was estimated at 1×10(-16) g per milliliter, or 3×10(-21) mol per milliliter, which extrapolates to approximately 40 to 100 oligomeric particles of PrP(Sc) per milliliter of urine. CONCLUSIONS Urine samples obtained from patients with variant Creutzfeldt-Jakob disease contained minute quantities of PrP(Sc). (Funded by the National Institutes of Health and others.).


Human Molecular Genetics | 2012

Pantothenate kinase-associated neurodegeneration: altered mitochondria membrane potential and defective respiration in Pank2 knock-out mouse model

Dario Brunetti; Sabrina Dusi; Michela Morbin; Andrea Uggetti; Fabio Moda; Ilaria D'Amato; Carla Giordano; Giulia d'Amati; Anna Cozzi; Sonia Levi; Susan J. Hayflick; Valeria Tiranti

Neurodegeneration with brain iron accumulation (NBIA) comprises a group of neurodegenerative disorders characterized by high brain content of iron and presence of axonal spheroids. Mutations in the PANK2 gene, which encodes pantothenate kinase 2, underlie an autosomal recessive inborn error of coenzyme A metabolism, called pantothenate kinase-associated neurodegeneration (PKAN). PKAN is characterized by dystonia, dysarthria, rigidity and pigmentary retinal degeneration. The pathogenesis of this disorder is poorly understood and, although PANK2 is a mitochondrial protein, perturbations in mitochondrial bioenergetics have not been reported. A knock-out (KO) mouse model of PKAN exhibits retinal degeneration and azoospermia, but lacks any neurological phenotype. The absence of a clinical phenotype has partially been explained by the different cellular localization of the human and murine PANK2 proteins. Here we demonstrate that the mouse Pank2 protein localizes to mitochondria, similar to its human orthologue. Moreover, we show that Pank2-defective neurons derived from KO mice have an altered mitochondrial membrane potential, a defect further corroborated by the observations of swollen mitochondria at the ultra-structural level and by the presence of defective respiration.


Journal of General Virology | 2012

Chronic wasting disease and atypical forms of bovine spongiform encephalopathy and scrapie are not transmissible to mice expressing wild-type levels of human prion protein

Rona Wilson; Chris Plinston; Nora Hunter; Cristina Casalone; Cristiano Corona; Fabrizio Tagliavini; Silvia Suardi; Margherita Ruggerone; Fabio Moda; Silvia Graziano; Marco Sbriccoli; Franco Cardone; Maurizio Pocchiari; Loredana Ingrosso; Thierry Baron; Juergen A. Richt; Olivier Andreoletti; M. M. Simmons; Richard Lockey; Jean Manson; Rona Barron

The association between bovine spongiform encephalopathy (BSE) and variant Creutzfeldt-Jakob disease (vCJD) has demonstrated that cattle transmissible spongiform encephalopathies (TSEs) can pose a risk to human health and raises the possibility that other ruminant TSEs may be transmissible to humans. In recent years, several novel TSEs in sheep, cattle and deer have been described and the risk posed to humans by these agents is currently unknown. In this study, we inoculated two forms of atypical BSE (BASE and H-type BSE), a chronic wasting disease (CWD) isolate and seven isolates of atypical scrapie into gene-targeted transgenic (Tg) mice expressing the human prion protein (PrP). Upon challenge with these ruminant TSEs, gene-targeted Tg mice expressing human PrP did not show any signs of disease pathology. These data strongly suggest the presence of a substantial transmission barrier between these recently identified ruminant TSEs and humans.


Acta Neuropathologica | 2010

Neuropathology of the recessive A673V APP mutation: Alzheimer disease with distinctive features

Giorgio Giaccone; Michela Morbin; Fabio Moda; Mario Botta; Giulia Mazzoleni; Andrea Uggetti; Marcella Catania; Maria Luisa Moro; Veronica Redaelli; Alberto Spagnoli; Roberta Simona Rossi; Mario Salmona; Giuseppe Di Fede; Fabrizio Tagliavini

Mutations of three different genes, encoding β-amyloid precursor protein (APP), presenilin 1 and presenilin 2 are associated with familial Alzheimer’s disease (AD). Recently, the APP mutation A673V has been identified that stands out from all the genetic defects previously reported in these three genes, since it causes the disease only in the homozygous state (Di Fede et al. in Science 323:1473–1477, 2009). We here provide the detailed neuropathological picture of the proband of this family, who was homozygous for the APP A673V mutation and recently came to death. The brain has been studied by histological and immunohistochemical techniques, at the optical and ultrastructural levels. Cerebral Aβ accumulation and tau pathology were severe and extensive. Peculiar features were the configuration of the Aβ deposits that were of large size, mostly perivascular and exhibited a close correspondence between the pattern elicited by amyloid stainings and the labeling obtained with immunoreagents specific for Aβ40 or Aβ42. Moreover, Aβ deposition spared the neostriatum while deeply affecting the cerebellum, and therefore was not in compliance with the hierarchical topographical sequence of involvement documented in sporadic AD. Therefore, the neuropathological picture of familial AD caused by the APP recessive mutation A673V presents distinctive characteristics compared to sporadic AD or familial AD inherited as a dominant trait. Main peculiar features are the morphology, structural properties and composition of the Aβ deposits as well as their topographic distribution in the brain.


Science Translational Medicine | 2016

Detection of prions in blood from patients with variant Creutzfeldt-Jakob disease

Luis Concha-Marambio; Sandra Pritzkow; Fabio Moda; Fabrizio Tagliavini; James Ironside; Paul E. Schulz; Claudio Soto

Prions can be detected in blood from patients with variant Creutzfeldt-Jakob disease with high sensitivity and specificity. A new blood test for prion diseases Prions are the proteinaceous infectious agents responsible for various animal and human diseases. The transmission of bovine spongiform encephalopathy into humans has led to a new illness, termed variant Creutzfeldt-Jakob disease (vCJD). Currently, the number of people infected by this new disease is unknown, which is a major concern because it has been shown that preclinical carriers of vCJD prions can transmit the disease by blood transfusion. Now, Concha-Marambio et al. report the development of a biochemical test to detect vCJD prions in blood with 100% sensitivity and specificity. Availability of a highly efficient blood test for vCJD is important to minimize further transmission of the disease, to increase blood safety, and to allow early diagnosis of this disease. Human prion diseases are infectious and invariably fatal neurodegenerative diseases. They include sporadic Creutzfeldt-Jakob disease (sCJD), the most common form, and variant CJD (vCJD), which is caused by interspecies transmission of prions from cattle infected by bovine spongiform encephalopathy. Development of a biochemical assay for the sensitive, specific, early, and noninvasive detection of prions (PrPSc) in the blood of patients affected by prion disease is a top medical priority to increase the safety of the blood supply. vCJD has already been transmitted from human to human by blood transfusion, and the number of asymptomatic carriers of vCJD in the U.K. alone is estimated to be 1 in 2000 people. We used the protein misfolding cyclic amplification (PMCA) technique to analyze blood samples from 14 cases of vCJD and 153 controls, including patients affected by sCJD and other neurodegenerative or neurological disorders as well as healthy subjects. Our results showed that PrPSc could be detected with 100% sensitivity and specificity in blood samples from vCJD patients. Detection was possible in any of the blood fractions analyzed and could be done with as little as a few microliters of sample volume. The PrPSc concentration in blood was estimated to be ~0.5 pg/ml. Our findings suggest that PMCA may be useful for premortem noninvasive diagnosis of vCJD and to identify prion contamination of the blood supply. Further studies are needed to fully validate the technology.


BMC Neuroscience | 2014

Defined α-synuclein prion-like molecular assemblies spreading in cell culture

Suzana Aulić; Tran Thanh Nhat Le; Fabio Moda; Saïda Abounit; Stefania Corvaglia; Loredana Casalis; Stefano Gustincich; Chiara Zurzolo; Fabrizio Tagliavini; Giuseppe Legname

Backgroundα-Synuclein (α-syn) plays a central role in the pathogenesis of synucleinopathies, a group of neurodegenerative disorders that includes Parkinson disease, dementia with Lewy bodies and multiple system atrophy. Several findings from cell culture and mouse experiments suggest intercellular α-syn transfer.ResultsThrough a methodology used to obtain synthetic mammalian prions, we tested whether recombinant human α-syn amyloids can promote prion-like accumulation in neuronal cell lines in vitro. A single exposure to amyloid fibrils of human α-syn was sufficient to induce aggregation of endogenous α-syn in human neuroblastoma SH-SY5Y cells. Remarkably, endogenous wild-type α-syn was sufficient for the formation of these aggregates, and overexpression of the protein was not required.ConclusionsOur results provide compelling evidence that endogenous α-syn can accumulate in cell culture after a single exposure to exogenous α-syn short amyloid fibrils. Importantly, using α-syn short amyloid fibrils as seed, endogenous α-syn aggregates and accumulates over several passages in cell culture, providing an excellent tool for potential therapeutic screening of pathogenic α-syn aggregates.


Brain Pathology | 2012

MM2-thalamic Creutzfeldt-Jakob disease: neuropathological, biochemical and transmission studies identify a distinctive prion strain

Fabio Moda; Silvia Suardi; Giuseppe Di Fede; Antonio Indaco; Lucia Limido; Chiara Vimercati; Margherita Ruggerone; Ilaria Campagnani; Jan Langeveld; Alessandro Terruzzi; Antonio Brambilla; Pietro Zerbi; Paolo Fociani; Matthew Bishop; Robert G. Will; Jean Manson; Giorgio Giaccone; Fabrizio Tagliavini

In Creutzfeldt–Jakob disease (CJD), molecular typing based on the size of the protease resistant core of the disease‐associated prion protein (PrPSc) and the M/V polymorphism at codon 129 of the PRNP gene correlates with the clinico‐pathologic subtypes. Approximately 95% of the sporadic 129MM CJD patients are characterized by cerebral deposition of type 1 PrPSc and correspond to the classic clinical CJD phenotype. The rare 129MM CJD patients with type 2 PrPSc are further subdivided in a cortical and a thalamic form also indicated as sporadic fatal insomnia.


Cell Reports | 2015

Grass Plants Bind, Retain, Uptake, and Transport Infectious Prions

Sandra Pritzkow; Rodrigo Morales; Fabio Moda; Uffaf Khan; Glenn C. Telling; Edward A. Hoover; Claudio Soto

Prions are the protein-based infectious agents responsible for prion diseases. Environmental prion contamination has been implicated in disease transmission. Here, we analyzed the binding and retention of infectious prion protein (PrP(Sc)) to plants. Small quantities of PrP(Sc) contained in diluted brain homogenate or in excretory materials (urine and feces) can bind to wheat grass roots and leaves. Wild-type hamsters were efficiently infected by ingestion of prion-contaminated plants. The prion-plant interaction occurs with prions from diverse origins, including chronic wasting disease. Furthermore, leaves contaminated by spraying with a prion-containing preparation retained PrP(Sc) for several weeks in the living plant. Finally, plants can uptake prions from contaminated soil and transport them to aerial parts of the plant (stem and leaves). These findings demonstrate that plants can efficiently bind infectious prions and act as carriers of infectivity, suggesting a possible role of environmental prion contamination in the horizontal transmission of the disease.


Nanoscale | 2010

A novel class of potential prion drugs: preliminary in vitro and in vivo data for multilayer coated gold nanoparticles

Hoang Ngoc Ai Tran; Fernanda Sousa; Fabio Moda; Subhra Mandal; Munish Chanana; Chiara Vimercati; Michela Morbin; Silke Krol; Fabrizio Tagliavini; Giuseppe Legname

Gold nanoparticles coated with oppositely charged polyelectrolytes, such as polyallylamine hydrochloride and polystyrenesulfonate, were examined for potential inhibition of prion protein aggregation and prion (PrPSc) conversion and replication. Different coatings, finishing with a positive or negative layer, were tested, and different numbers of layers were investigated for their ability to interact and reduce the accumulation of PrPSc in scrapie prion infected ScGT1 and ScN2a cells. The particles efficiently hampered the accumulation of PrPSc in ScN2a cells and showed curing effects on ScGT1 cells with a nanoparticle concentration in the picomolar range. Finally, incubation periods of prion-infected mice treated with nanomolar concentrations of gold nanoparticles were significantly longer compared to untreated controls.


Prion | 2012

Brain delivery of AAV9 expressing an anti-PrP monovalent antibody delays prion disease in mice.

Fabio Moda; Chiara Vimercati; Ilaria Campagnani; Margherita Ruggerone; Giorgio Giaccone; Michela Morbin; Lorena Zentilin; Mauro Giacca; Ileana Zucca; Giuseppe Legname; Fabrizio Tagliavini

Prion diseases are caused by a conformational modification of the cellular prion protein (PrPC) into disease-specific forms, termed PrPSc, that have the ability to interact with PrPC promoting its conversion to PrPSc. In vitro studies demonstrated that anti-PrP antibodies inhibit this process. In particular, the single chain variable fragment D18 antibody (scFvD18) showed high efficiency in curing chronically prion-infected cells. This molecule binds the PrPC region involved in the interaction with PrPSc thus halting further prion formation. These findings prompted us to test the efficiency of scFvD18 in vivo. A recombinant Adeno-Associated Viral vector serotype 9 was used to deliver scFvD18 to the brain of mice that were subsequently infected by intraperitoneal route with the mouse-adapted scrapie strain RML. We found that the treatment was safe, prolonged the incubation time of scrapie-infected animals and decreased the burden of total proteinase-resistant PrPSc in the brain, suggesting that scFvD18 interferes with prion replication in vivo. This approach is relevant for designing new therapeutic strategies for prion diseases and other disorders characterized by protein misfolding.

Collaboration


Dive into the Fabio Moda's collaboration.

Top Co-Authors

Avatar

Fabrizio Tagliavini

Carlo Besta Neurological Institute

View shared research outputs
Top Co-Authors

Avatar

Giorgio Giaccone

Carlo Besta Neurological Institute

View shared research outputs
Top Co-Authors

Avatar

Giuseppe Legname

International School for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

Ilaria Campagnani

Carlo Besta Neurological Institute

View shared research outputs
Top Co-Authors

Avatar

Margherita Ruggerone

Carlo Besta Neurological Institute

View shared research outputs
Top Co-Authors

Avatar

Edoardo Bistaffa

International School for Advanced Studies

View shared research outputs
Top Co-Authors

Avatar

Marcella Catania

Carlo Besta Neurological Institute

View shared research outputs
Top Co-Authors

Avatar

Michela Morbin

Carlo Besta Neurological Institute

View shared research outputs
Top Co-Authors

Avatar

Silvia Suardi

Carlo Besta Neurological Institute

View shared research outputs
Top Co-Authors

Avatar

Claudio Soto

University of Texas Health Science Center at Houston

View shared research outputs
Researchain Logo
Decentralizing Knowledge