Fabio Mohn
Friedrich Miescher Institute for Biomedical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fabio Mohn.
Molecular Cell | 2008
Fabio Mohn; Michael Weber; Michael Rebhan; Tim Roloff; Jens Richter; Michael B. Stadler; Miriam Bibel; Dirk Schübeler
Cellular differentiation entails loss of pluripotency and gain of lineage- and cell-type-specific characteristics. Using a murine system that progresses from stem cells to lineage-committed progenitors to terminally differentiated neurons, we analyzed DNA methylation and Polycomb-mediated histone H3 methylation (H3K27me3). We show that several hundred promoters, including pluripotency and germline-specific genes, become DNA methylated in lineage-committed progenitor cells, suggesting that DNA methylation may already repress pluripotency in progenitor cells. Conversely, we detect loss and acquisition of H3K27me3 at additional targets in both progenitor and terminal states. Surprisingly, many neuron-specific genes that become activated upon terminal differentiation are Polycomb targets only in progenitor cells. Moreover, promoters marked by H3K27me3 in stem cells frequently become DNA methylated during differentiation, suggesting context-dependent crosstalk between Polycomb and DNA methylation. These data suggest a model how de novo DNA methylation and dynamic switches in Polycomb targets restrict pluripotency and define the developmental potential of progenitor cells.
Nature Structural & Molecular Biology | 2008
Lasse Sinkkonen; Tabea Hugenschmidt; Philipp Berninger; Dimos Gaidatzis; Fabio Mohn; Caroline G Artus-Revel; Mihaela Zavolan; Petr Svoboda; Witold Filipowicz
Loss of microRNA (miRNA) pathway components negatively affects differentiation of embryonic stem (ES) cells, but the underlying molecular mechanisms remain poorly defined. Here we characterize changes in mouse ES cells lacking Dicer (Dicer1). Transcriptome analysis of Dicer−/− cells indicates that the ES-specific miR-290 cluster has an important regulatory function in undifferentiated ES cells. Consistently, many of the defects in Dicer-deficient cells can be reversed by transfection with miR-290 family miRNAs. We demonstrate that Oct4 (also known as Pou5f1) silencing in differentiating Dicer−/− ES cells is accompanied by accumulation of repressive histone marks but not by DNA methylation, which prevents the stable repression of Oct4. The methylation defect correlates with downregulation of de novo DNA methyltransferases (Dnmts). The downregulation is mediated by Rbl2 and possibly other transcriptional repressors, potential direct targets of miR-290 cluster miRNAs. The defective DNA methylation can be rescued by ectopic expression of de novo Dnmts or by transfection of the miR-290 cluster miRNAs, indicating that de novo DNA methylation in ES cells is controlled by miRNAs.
Nature Genetics | 2011
Florian Lienert; Christiane Wirbelauer; Indrani Som; Ann Dean; Fabio Mohn; Dirk Schübeler
Cytosine methylation is a repressive, epigenetically propagated DNA modification. Although patterns of DNA methylation seem tightly regulated in mammals, it is unclear how these are specified and to what extent this process entails genetic or epigenetic regulation. To dissect the role of the underlying DNA sequence, we sequentially inserted over 50 different DNA elements into the same genomic locus in mouse stem cells. Promoter sequences of approximately 1,000 bp autonomously recapitulated correct DNA methylation in pluripotent cells. Moreover, they supported proper de novo methylation during differentiation. Truncation analysis revealed that this regulatory potential is contained within small methylation-determining regions (MDRs). MDRs can mediate both hypomethylation and de novo methylation in cis, and their activity depends on developmental state, motifs for DNA-binding factors and a critical CpG density. These results demonstrate that proximal sequence elements are both necessary and sufficient for regulating DNA methylation and reveal basic constraints of this regulation.
Trends in Genetics | 2009
Fabio Mohn; Dirk Schübeler
Stem cells and multipotent progenitor cells face the challenge of balancing the stability and plasticity of their developmental states. Their self-renewal requires the maintenance of a defined gene-expression program, which must be stably adjusted towards a new fate upon differentiation. Recent data imply that epigenetic mechanisms can confer robustness to steady state gene expression but can also direct the terminal fate of lineage-restricted multipotent progenitor cells. Here, we review the latest models for how changes in chromatin and DNA methylation are regulated during cellular differentiation. We further propose that targets of epigenetic repression share common features in the sequences of their regulatory regions, thereby suggesting a co-evolution of epigenetic pathways and classes of cis-acting elements.
The EMBO Journal | 2008
Kevin B. Dong; Irina A. Maksakova; Fabio Mohn; Danny Leung; Ruth Appanah; Sandra Lee; Hao W Yang; Lucia L. Lam; Dixie L. Mager; Dirk Schübeler; Makoto Tachibana; Yoichi Shinkai; Matthew C. Lorincz
Histone H3K9 methylation is required for DNA methylation and silencing of repetitive elements in plants and filamentous fungi. In mammalian cells however, deletion of the H3K9 histone methyltransferases (HMTases) Suv39h1 and Suv39h2 does not affect DNA methylation of the endogenous retrovirus murine leukaemia virus, indicating that H3K9 methylation is dispensable for DNA methylation of retrotransposons, or that a different HMTase is involved. We demonstrate that embryonic stem (ES) cells lacking the H3K9 HMTase G9a show a significant reduction in DNA methylation of retrotransposons, major satellite repeats and densely methylated CpG‐rich promoters. Surprisingly, demethylated retrotransposons remain transcriptionally silent in G9a−/− cells, and show only a modest decrease in H3K9me2 and no decrease in H3K9me3 or HP1α binding, indicating that H3K9 methylation per se is not the relevant trigger for DNA methylation. Indeed, introduction of catalytically inactive G9a transgenes partially ‘rescues’ the DNA methylation defect observed in G9a−/− cells. Taken together, these observations reveal that H3K9me3 and HP1α recruitment to retrotransposons occurs independent of DNA methylation in ES cells and that G9a promotes DNA methylation independent of its HMTase activity.
Methods of Molecular Biology | 2009
Fabio Mohn; Michael Weber; Dirk Schübeler; Tim-Christoph Roloff
Methylated DNA immunoprecipitation (MeDIP) is a versatile immunocapturing approach for unbiased detection of methylated DNA. In brief, genomic DNA is randomly sheared by sonication and immunoprecipitated with a monoclonal antibody that specifically recognizes 5-methylcytidine. The resulting enrichment of methylated DNA in the immunoprecipitated fraction can be determined by PCR to assess the methylation state of individual regions. Alternatively, MeDIP can be combined with large-scale analysis using microarrays as a genome-wide experimental readout. This protocol has been applied to generate comprehensive DNA methylation profiles on a genome-wide scale in mammals and plants, and further to identify abnormally methylated genes in cancer cells.
Science | 2015
Fabio Mohn; Dominik Handler; Julius Brennecke
Spreading small RNAs to protect the genome In animals, PIWI-interacting RNAs (piRNAs) are small noncoding RNAs that protect our germ lines from the ravages of transposons. To do this, piRNAs target and cleave transposon RNAs. Synthesis of piRNA is initiated by a cut made in a long, single-stranded precursor RNA. The piRNAs can also undergo a self-perpetuating amplification cycle (see the Perspective by Siomi and Siomi). Han et al. and Mohn et al. now reveal that piRNA biogenesis can also spread in a strictly phased manner from the site of initial piRNA formation. Spreading piRNA synthesis greatly increases their sequence diversity, potentially helping them to target endogenous and novel transposons more effectively. Science, this issue p. 817, p. 812; see also p. 756 Phased synthesis of germline-protective piRNAs along precursor RNAs increases piRNA sequence diversity. [Also see Perspective by Siomi and Siomi] In animal gonads, PIWI-clade Argonaute proteins repress transposons sequence-specifically via bound Piwi-interacting RNAs (piRNAs). These are processed from single-stranded precursor RNAs by largely unknown mechanisms. Here we show that primary piRNA biogenesis is a 3′-directed and phased process that, in the Drosophila germ line, is initiated by secondary piRNA-guided transcript cleavage. Phasing results from consecutive endonucleolytic cleavages catalyzed by Zucchini, implying coupled formation of 3′ and 5′ ends of flanking piRNAs. Unexpectedly, Zucchini also participates in 3′ end formation of secondary piRNAs. Its function can, however, be bypassed by downstream piRNA-guided precursor cleavages coupled to exonucleolytic trimming. Our data uncover an evolutionarily conserved piRNA biogenesis mechanism in which Zucchini plays a central role in defining piRNA 5′ and 3′ ends.
PLOS Genetics | 2011
Florian Lienert; Fabio Mohn; Vijay K. Tiwari; Tuncay Baubec; Tim Roloff; Dimos Gaidatzis; Michael B. Stadler; Dirk Schübeler
Cellular differentiation entails reprogramming of the transcriptome from a pluripotent to a unipotent fate. This process was suggested to coincide with a global increase of repressive heterochromatin, which results in a reduction of transcriptional plasticity and potential. Here we report the dynamics of the transcriptome and an abundant heterochromatic histone modification, dimethylation of histone H3 at lysine 9 (H3K9me2), during neuronal differentiation of embryonic stem cells. In contrast to the prevailing model, we find H3K9me2 to occupy over 50% of chromosomal regions already in stem cells. Marked are most genomic regions that are devoid of transcription and a subgroup of histone modifications. Importantly, no global increase occurs during differentiation, but discrete local changes of H3K9me2 particularly at genic regions can be detected. Mirroring the cell fate change, many genes show altered expression upon differentiation. Quantitative sequencing of transcripts demonstrates however that the total number of active genes is equal between stem cells and several tested differentiated cell types. Together, these findings reveal high prevalence of a heterochromatic mark in stem cells and challenge the model of low abundance of epigenetic repression and resulting global basal level transcription in stem cells. This suggests that cellular differentiation entails local rather than global changes in epigenetic repression and transcriptional activity.
eLife | 2014
Vincenzo Di Cerbo; Fabio Mohn; Daniel P Ryan; Emilie Montellier; Salim Kacem; Philipp Tropberger; Eleni Kallis; Monika Holzner; Leslie Hoerner; Angelika Feldmann; Florian Richter; Andrew J. Bannister; Gerhard Mittler; Jens Michaelis; Saadi Khochbin; Robert Feil; Dirk Schuebeler; Tom Owen-Hughes; Sylvain Daujat; Robert Schneider
Post-translational modifications of proteins have emerged as a major mechanism for regulating gene expression. However, our understanding of how histone modifications directly affect chromatin function remains limited. In this study, we investigate acetylation of histone H3 at lysine 64 (H3K64ac), a previously uncharacterized acetylation on the lateral surface of the histone octamer. We show that H3K64ac regulates nucleosome stability and facilitates nucleosome eviction and hence gene expression in vivo. In line with this, we demonstrate that H3K64ac is enriched in vivo at the transcriptional start sites of active genes and it defines transcriptionally active chromatin. Moreover, we find that the p300 co-activator acetylates H3K64, and consistent with a transcriptional activation function, H3K64ac opposes its repressive counterpart H3K64me3. Our findings reveal an important role for a histone modification within the nucleosome core as a regulator of chromatin function and they demonstrate that lateral surface modifications can define functionally opposing chromatin states. DOI: http://dx.doi.org/10.7554/eLife.01632.001
Nature | 2016
Rippei Hayashi; Jakob Schnabl; Dominik Handler; Fabio Mohn; Stefan L. Ameres; Julius Brennecke
Small regulatory RNAs guide Argonaute (Ago) proteins in a sequence-specific manner to their targets and therefore have important roles in eukaryotic gene silencing. Of the three small RNA classes, microRNAs and short interfering RNAs are processed from double-stranded precursors into defined 21- to 23-mers by Dicer, an endoribonuclease with intrinsic ruler function. PIWI-interacting RNAs (piRNAs)—the 22–30-nt-long guides for PIWI-clade Ago proteins that silence transposons in animal gonads—are generated independently of Dicer from single-stranded precursors. piRNA 5′ ends are defined either by Zucchini, the Drosophila homologue of mitoPLD—a mitochondria-anchored endonuclease, or by piRNA-guided target cleavage. Formation of piRNA 3′ ends is poorly understood. Here we report that two genetically and mechanistically distinct pathways generate piRNA 3′ ends in Drosophila. The initiating nucleases are either Zucchini or the PIWI-clade proteins Aubergine (Aub) or Ago3. While Zucchini-mediated cleavages directly define mature piRNA 3′ ends, Aub/Ago3-mediated cleavages liberate pre-piRNAs that require extensive resection by the 3′-to-5′ exoribonuclease Nibbler (Drosophila homologue of Mut-7). The relative activity of these two pathways dictates the extent to which piRNAs are directed to cytoplasmic or nuclear PIWI-clade proteins and thereby sets the balance between post-transcriptional and transcriptional silencing. Notably, loss of both Zucchini and Nibbler reveals a minimal, Argonaute-driven small RNA biogenesis pathway in which piRNA 5′ and 3′ ends are directly produced by closely spaced Aub/Ago3-mediated cleavage events. Our data reveal a coherent model for piRNA biogenesis, and should aid the mechanistic dissection of the processes that govern piRNA 3′-end formation.