Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fabrice Marquet is active.

Publication


Featured researches published by Fabrice Marquet.


Physics in Medicine and Biology | 2009

Non-invasive transcranial ultrasound therapy based on a 3D CT scan: protocol validation and in vitro results

Fabrice Marquet; Mathieu Pernot; Jean-François Aubry; Gabriel Montaldo; Laurent Marsac; M. Tanter; Mathias Fink

A non-invasive protocol for transcranial brain tissue ablation with ultrasound is studied and validated in vitro. The skull induces strong aberrations both in phase and in amplitude, resulting in a severe degradation of the beam shape. Adaptive corrections of the distortions induced by the skull bone are performed using a previous 3D computational tomography scan acquisition (CT) of the skull bone structure. These CT scan data are used as entry parameters in a FDTD (finite differences time domain) simulation of the full wave propagation equation. A numerical computation is used to deduce the impulse response relating the targeted location and the ultrasound therapeutic array, thus providing a virtual time-reversal mirror. This impulse response is then time-reversed and transmitted experimentally by a therapeutic array positioned exactly in the same referential frame as the one used during CT scan acquisitions. In vitro experiments are conducted on monkey and human skull specimens using an array of 300 transmit elements working at a central frequency of 1 MHz. These experiments show a precise refocusing of the ultrasonic beam at the targeted location with a positioning error lower than 0.7 mm. The complete validation of this transcranial adaptive focusing procedure paves the way to in vivo animal and human transcranial HIFU investigations.


PLOS ONE | 2011

Noninvasive, transient and selective blood-brain barrier opening in non-human primates in vivo.

Fabrice Marquet; Yao-Sheng Tung; Tobias Teichert; Vincent P. Ferrera; Elisa E. Konofagou

The blood-brain barrier (BBB) is a specialized vascular system that impedes entry of all large and the vast majority of small molecules including the most potent central nervous system (CNS) disease therapeutic agents from entering from the lumen into the brain parenchyma. Microbubble-enhanced, focused ultrasound (ME-FUS) has been previously shown to disrupt noninvasively, selectively, and transiently the BBB in small animals in vivo. For the first time, the feasibility of transcranial ME-FUS BBB opening in non-human primates is demonstrated with subsequent BBB recovery. Sonications were combined with two different types of microbubbles (customized 4–5 µm and Definity®). 3T MRI was used to confirm the BBB disruption and to assess brain damage.


International Journal of Hyperthermia | 2007

Compensating for bone interfaces and respiratory motion in high-intensity focused ultrasound.

M. Tanter; Mathieu Pernot; Jean-François Aubry; Gabriel Montaldo; Fabrice Marquet; Mathias Fink

Bursts of focused ultrasound energy a thousand times more intense than diagnostic ultrasound have become a non-invasive option for treating cancer, from breast to prostate or uterine fibroid, during the last decade. Despite this progress, many issues still need to be addressed. First, the distortions caused by defocusing obstacles, such as the skull or ribs, on the ultrasonic therapeutic beam are still being investigated. Multi-element transducer technology must be used in order to achieve such transcranial or transcostal adaptive focusing. Second, the problem of motion artifacts, a key component in the treatment of abdominal lesions, has been shown significantly to influence the efficacy and treatment time. Though many methods have been proposed for the detection of organ motion, little work has been done to develop a comprehensive solution including motion tracking and feedback correction in real time. This paper is a review of the work achieved by authors in transcranial high-intensity focused ultrasound (HIFU), transcostal HIFU and motion compensated HIFU. For these three issues, the optimal solution can be reached using the same technology of multi-element transducers devices able to work both in transmit and receive modes.


Physics in Medicine and Biology | 2008

Transcostal high-intensity-focused ultrasound: ex vivo adaptive focusing feasibility study

Jean-François Aubry; Mathieu Pernot; Fabrice Marquet; Mickael Tanter; Mathias Fink

Ex vivo experiments have been conducted through excised pork rib with bone, cartilage, muscle and skin. The aberrating effect of the ribcage has been experimentally evaluated. Adaptive ultrasonic focusing through ribs has been studied at low power. Without any correction, the pressure fields in the focal plane were both affected by inhomogeneous attenuation and phase distortion and three main effects were observed: a mean 2 mm shift of the main lobe, a mean 1.25 mm spreading of the half width of the main lobe and up to 20 dB increase of the secondary lobe level. Thanks to time-reversal focusing, a 5 dB decrease in the secondary lobes was obtained and the ratio between the energy deposited at the target location and the total amount of energy emitted by the therapeutic array was six times higher than that without correction. Time-reversal minimizes the heating of the ribs by automatically sonicating between the ribs, as demonstrated by temperature measurements using thermocouples placed at different locations on the ribcage. It is also discussed how this aberration correction process could be achieved non-invasively for clinical application.


Applied Physics Letters | 2011

Feasibility of noninvasive cavitation-guided blood-brain barrier opening using focused ultrasound and microbubbles in nonhuman primates

Yao-Sheng Tung; Fabrice Marquet; Tobias Teichert; Vincent P. Ferrera; Elisa E. Konofagou

In vivo transcranial and noninvasive cavitation detection with blood-brain barrier (BBB) opening in nonhuman primates is hereby reported. The BBB in monkeys was opened transcranically using focused ultrasound (FUS) in conjunction with microbubbles. A passive cavitation detector, confocal with the FUS transducer, was used to identify and monitor the bubble behavior. During sonication, the cavitation spectrum, which was found to be region-, pressure-, and bubble-dependent, provided real-time feedback regarding the opening occurrence and its properties. These findings demonstrate feasibility of transcranial, cavitation-guided BBB opening using FUS and microbubbles in noninvasive human applications.


Physics in Medicine and Biology | 2011

Optimal transcostal high-intensity focused ultrasound with combined real-time 3D movement tracking and correction.

Fabrice Marquet; J.F. Aubry; Mathieu Pernot; Mathias Fink; M. Tanter

Recent studies have demonstrated the feasibility of transcostal high intensity focused ultrasound (HIFU) treatment in liver. However, two factors limit thermal necrosis of the liver through the ribs: the energy deposition at focus is decreased by the respiratory movement of the liver and the energy deposition on the skin is increased by the presence of highly absorbing bone structures. Ex vivo ablations were conducted to validate the feasibility of a transcostal real-time 3D movement tracking and correction mode. Experiments were conducted through a chest phantom made of three human ribs immersed in water and were placed in front of a 300 element array working at 1 MHz. A binarized apodization law introduced recently in order to spare the rib cage during treatment has been extended here with real-time electronic steering of the beam. Thermal simulations have been conducted to determine the steering limits. In vivo 3D-movement detection was performed on pigs using an ultrasonic sequence. The maximum error on the transcostal motion detection was measured to be 0.09 ± 0.097 mm on the anterior-posterior axis. Finally, a complete sequence was developed combining real-time 3D transcostal movement correction and spiral trajectory of the HIFU beam, allowing the system to treat larger areas with optimized efficiency. Lesions as large as 1 cm in diameter have been produced at focus in excised liver, whereas no necroses could be obtained with the same emitted power without correcting the movement of the tissue sample.


PLOS ONE | 2014

Real-time, transcranial monitoring of safe blood-brain barrier opening in non-human primates.

Fabrice Marquet; Tobias Teichert; Shih-Ying Wu; Yao-Sheng Tung; Matthew Downs; Shutao Wang; Cherry C. Chen; Vincent P. Ferrera; Elisa E. Konofagou

The delivery of drugs to specific neural targets faces two fundamental problems: most drugs do not cross the blood-brain barrier and those that do spread to all parts of the brain. To date there exists only one non-invasive methodology with the potential to solve these problems: selective blood-brain barrier disruption using micro-bubble enhanced focused ultrasound. We have recently developed a single-element 500 kHz spherical transducer ultrasound setup for use in the nonhuman primate. Here, we tested the accuracy of the system by targeting the caudate nucleus of the basal ganglia in two macaque monkeys. Our results show that average in-plane error of the system is on the order of 2 mm and targeting error in depth, i.e., along the ultrasound path, is even smaller averaging 1.2 mm. We have also developed a real-time treatment monitoring based on backscattered emissions spectral analyses. This technique helped us determining a safe and reliable acoustic parameters window for BBB opening.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2014

Transcranial cavitation detection in primates during blood-brain barrier opening-a performance assessment study

Shih-Ying Wu; Yao-Sheng Tung; Fabrice Marquet; Matthew Downs; Carlos Sierra Sanchez; Cherry Chen Chen; Vincent P. Ferrera; Elisa E. Konofagou

Focused ultrasound (FUS) has been shown promise in treating the brain locally and noninvasively. Transcranial passive cavitation detection (PCD) provides methodology for monitoring the treatment in real time, but the skull effects remain a major challenge for its translation to the clinic. In this study, we investigated the sensitivity, reliability, and limitations of PCD through primate (macaque and human) skulls in vitro. The results were further correlated with the in vivo macaque studies including the transcranial PCD calibration and real-time monitoring of blood-brain barrier (BBB) opening, with magnetic resonance imaging assessing the opening and safety. The stable cavitation doses using harmonics (SCDh) and ultraharmonics (SCDu), the inertial cavitation dose (ICD), and the cavitation SNR were quantified based on the PCD signals. Results showed that through the macaque skull, the pressure threshold for detecting the SCDh remained the same as without the skull in place, whereas it increased for the SCDu and ICD; through the human skull, it increased for all cavitation doses. The transcranial PCD was found to be reliable both in vitro and in vivo when the transcranial cavitation SNR exceeded the 1-dB detection limit through the in vitro macaque (attenuation: 4.92 dB/mm) and human (attenuation: 7.33 dB/ mm) skull. In addition, using long pulses enabled reliable PCD monitoring and facilitate BBB opening at low pressures. The in vivo results showed that the SCDh became detectable at pressures as low as 100 kPa; the ICD became detectable at 250 kPa, although it could occur at lower pressures; and the SCDu became detectable at 700 kPa and was less reliable at lower pressures. Real-time monitoring of PCD was further implemented during BBB opening, with successful and safe opening achieved at 250 to 600 kPa in both the thalamus and the putamen. In conclusion, this study shows that transcranial PCD in macaques in vitro and in vivo, and in humans in vitro, is reliable by improving the cavitation SNR beyond the 1-dB detection limit.


Journal of the Acoustical Society of America | 2013

Non-invasive ultrasonic surgery of the brain in non-human primates

Fabrice Marquet; Anne-Laure Boch; Mathieu Pernot; Gabriel Montaldo; Danielle Seilhean; Mathias Fink; Mickael Tanter; Jean-François Aubry

High-intensity focused ultrasound causes selective tissue necrosis efficiently and safely, namely, in the prostate, liver, and uterine fibroid. Nevertheless, ablation of brain tissue using focused ultrasound remains limited due to strong aberrations induced by the skull. To achieve ultrasonic transcranial brain ablation, such aberrations have to be compensated. In this study, non-invasive therapy was performed on monkeys using adaptive correction of the therapeutic beam and 3D simulations of transcranial wave propagation based on 3D computed tomographic (CT) scan information. The aim of the study was two-fold: induce lesions in a non-human primate brain non-invasively and investigate the potential side effects. Stereotactic targeting was performed on five Macaca fascicularis individuals. Each hemisphere was treated separately with a 15-day interval and animals were sacrificed two days after the last treatment. The ultrasonic dose delivered at the focus was increased from one treatment location to the other to estimate the thermal dose for tissue alteration. Thermal doses in the brain were determined by numerical computations. Treatment efficiency and safety were evaluated histologically. The threshold for tissue damage in the brain was measured to be between 90 and 280 cumulative equivalent minutes at 43 °C. Intravenous injection of corticoids before the treatment limited the side effects.


Physics in Medicine and Biology | 2014

Multi-parametric monitoring and assessment of high-intensity focused ultrasound (HIFU) boiling by harmonic motion imaging for focused ultrasound (HMIFU): an ex vivo feasibility study.

Gary Y. Hou; Fabrice Marquet; Shutao Wang; Elisa E. Konofagou

Harmonic motion imaging for focused ultrasound (HMIFU) is a recently developed high-intensity focused ultrasound (HIFU) treatment monitoring method with feasibilities demonstrated in vitro and in vivo. Here, a multi-parametric study is performed to investigate both elastic and acoustics-independent viscoelastic tissue changes using the Harmonic Motion Imaging (HMI) displacement, axial compressive strain and change in relative phase shift during high energy HIFU treatment with tissue boiling. Forty three (n = 43) thermal lesions were formed in ex vivo canine liver specimens (n = 28). Two-dimensional (2D) transverse HMI displacement maps were also obtained before and after lesion formation. The same method was repeated in 10 s, 20 s and 30 s HIFU durations at three different acoustic powers of 8, 10, and 11 W, which were selected and verified as treatment parameters capable of inducing boiling using both thermocouple and passive cavitation detection (PCD) measurements. Although a steady decrease in the displacement, compressive strain, and relative change in the focal phase shift (Δϕ) were obtained in numerous cases, indicating an overall increase in relative stiffness, the study outcomes also showed that during boiling, a reverse lesion-to-background displacement contrast was detected, indicating potential change in tissue absorption, geometrical change and/or, mechanical gelatification or pulverization. Following treatment, corresponding 2D HMI displacement images of the thermal lesions also mapped consistent discrepancy in the lesion-to-background displacement contrast. Despite the expectedly chaotic changes in acoustic properties with boiling, the relative change in phase shift showed a consistent decrease, indicating its robustness to monitor biomechanical properties independent of the acoustic property changes throughout the HIFU treatment. In addition, the 2D HMI displacement images confirmed and indicated the increase in the thermal lesion size with treatment duration, which was validated against pathology. In conclusion, multi-parametric HMIFU was shown capable of monitoring and mapping tissue viscoelastic response changes during and after HIFU boiling, some of which were independent of the acoustic parameter changes.

Collaboration


Dive into the Fabrice Marquet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mathias Fink

PSL Research University

View shared research outputs
Top Co-Authors

Avatar

Jean-François Aubry

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge