Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fabrice Odefrey is active.

Publication


Featured researches published by Fabrice Odefrey.


Nature Genetics | 2007

A common coding variant in CASP8 is associated with breast cancer risk

Angela Cox; Alison M. Dunning; Montserrat Garcia-Closas; Sabapathy P. Balasubramanian; Malcolm Reed; Karen A. Pooley; Serena Scollen; Caroline Baynes; Bruce A.J. Ponder; Stephen J. Chanock; Jolanta Lissowska; Louise A. Brinton; Beata Peplonska; Melissa C. Southey; John L. Hopper; Margaret McCredie; Graham G. Giles; Olivia Fletcher; Nichola Johnson; Isabel dos Santos Silva; Lorna Gibson; Stig E. Bojesen; Børge G. Nordestgaard; Christen K. Axelsson; Diana Torres; Ute Hamann; Christina Justenhoven; Hiltrud Brauch; Jenny Chang-Claude; Silke Kropp

The Breast Cancer Association Consortium (BCAC) has been established to conduct combined case-control analyses with augmented statistical power to try to confirm putative genetic associations with breast cancer. We genotyped nine SNPs for which there was some prior evidence of an association with breast cancer: CASP8 D302H (rs1045485), IGFBP3 −202 C → A (rs2854744), SOD2 V16A (rs1799725), TGFB1 L10P (rs1982073), ATM S49C (rs1800054), ADH1B 3′ UTR A → G (rs1042026), CDKN1A S31R (rs1801270), ICAM5 V301I (rs1056538) and NUMA1 A794G (rs3750913). We included data from 9–15 studies, comprising 11,391–18,290 cases and 14,753–22,670 controls. We found evidence of an association with breast cancer for CASP8 D302H (with odds ratios (OR) of 0.89 (95% confidence interval (c.i.): 0.85–0.94) and 0.74 (95% c.i.: 0.62–0.87) for heterozygotes and rare homozygotes, respectively, compared with common homozygotes; Ptrend = 1.1 × 10−7) and weaker evidence for TGFB1 L10P (OR = 1.07 (95% c.i.: 1.02–1.13) and 1.16 (95% c.i.: 1.08–1.25), respectively; Ptrend = 2.8 × 10−5). These results demonstrate that common breast cancer susceptibility alleles with small effects on risk can be identified, given sufficiently powerful studies.NOTE: In the version of this article initially published, there was an error that affected the calculations of the odds ratios, confidence intervals, between-study heterogeneity, trend test and test for association for SNP ICAM5 V301I in Table 1 (ICAM5 V301I); genotype counts in Supplementary Table 2 (ICAM5; ICR_FBCS and Kuopio studies) and minor allele frequencies, trend test and odds ratios for heterozygotes and rare homozygotes in Supplementary Table 3 (ICAM5; ICR_FBCS and Kuopio studies). The errors in Table 1 have been corrected in the PDF version of the article. The errors in supplementary information have been corrected online.


Genes, Chromosomes and Cancer | 2006

A genome wide linkage search for breast cancer susceptibility genes.

Paula Smith; Lesley McGuffog; Douglas F. Easton; Graham J. Mann; Gulietta M. Pupo; Beth Newman; Georgia Chenevix-Trench; Csilla Szabo; Melissa C. Southey; Helene Renard; Fabrice Odefrey; Henry T. Lynch; Dominique Stoppa-Lyonnet; Fergus J. Couch; John L. Hopper; Graham G. Giles; Margaret McCredie; Saundra S. Buys; Irene L. Andrulis; Ruby T. Senie; David E. Goldgar; Rogier A. Oldenburg; Karin Kroeze-Jansema; Jaennelle Kraan; Hanne Meijers-Heijboer; J.G.M. Klijn; Christi J. van Asperen; Inge van Leeuwen; Hans F. A. Vasen; Cees J. Cornelisse

Mutations in known breast cancer susceptibility genes account for a minority of the familial aggregation of the disease. To search for further breast cancer susceptibility genes, we performed a combined analysis of four genome‐wide linkage screens, which included a total of 149 multiple case breast cancer families. All families included at least three cases of breast cancer diagnosed below age 60 years, at least one of whom had been tested and found not to carry a BRCA1 or BRCA2 mutation. Evidence for linkage was assessed using parametric linkage analysis, assuming both a dominant and a recessive mode of inheritance, and using nonparametric methods. The highest LOD score obtained in any analysis of the combined data was 1.80 under the dominant model, in a region on chromosome 4 close to marker D4S392. Three further LOD scores over 1 were identified in the parametric analyses and two in the nonparametric analyses. A maximum LOD score of 2.40 was found on chromosome arm 2p in families with four or more cases of breast cancer diagnosed below age 50 years. The number of linkage peaks did not differ from the number expected by chance. These results suggest regions that may harbor novel breast cancer susceptibility genes. They also indicate that no single gene is likely to account for a large fraction of the familial aggregation of breast cancer that is not due to mutations in BRCA1 or BRCA2.


American Journal of Human Genetics | 2012

Rare Mutations in XRCC2 Increase the Risk of Breast Cancer

Daniel J. Park; Fabienne Lesueur; Tú Nguyen-Dumont; Maroulio Pertesi; Fabrice Odefrey; Fleur Hammet; Susan L. Neuhausen; Esther M. John; Irene L. Andrulis; Mb Terry; Mark J. Daly; S. Buys; F. Le Calvez-Kelm; Andrew Lonie; Bernard J. Pope; Helen Tsimiklis; Catherine Voegele; F.M. Hilbers; Nicoline Hoogerbrugge; A. Barroso; A Osorio; Graham G. Giles; Peter Devilee; Javier Benitez; John L. Hopper; Sean V. Tavtigian; David E. Goldgar; Melissa C. Southey

An exome-sequencing study of families with multiple breast-cancer-affected individuals identified two families with XRCC2 mutations, one with a protein-truncating mutation and one with a probably deleterious missense mutation. We performed a population-based case-control mutation-screening study that identified six probably pathogenic coding variants in 1,308 cases with early-onset breast cancer and no variants in 1,120 controls (the severity grading was p < 0.02). We also performed additional mutation screening in 689 multiple-case families. We identified ten breast-cancer-affected families with protein-truncating or probably deleterious rare missense variants in XRCC2. Our identification of XRCC2 as a breast cancer susceptibility gene thus increases the proportion of breast cancers that are associated with homologous recombination-DNA-repair dysfunction and Fanconi anemia and could therefore benefit from specific targeted treatments such as PARP (poly ADP ribose polymerase) inhibitors. This study demonstrates the power of massively parallel sequencing for discovering susceptibility genes for common, complex diseases.


Human Molecular Genetics | 2009

FGFR2 variants and breast cancer risk: fine-scale mapping using African American studies and analysis of chromatin conformation

Miriam S. Udler; Kerstin B. Meyer; Karen A. Pooley; Eric Karlins; Jeffery P. Struewing; Jinghui Zhang; David R. Doody; Stewart MacArthur; Jonathan Tyrer; Paul Pharoah; Robert Luben; Leslie Bernstein; Laurence N. Kolonel; Brian E. Henderson; Loic Le Marchand; Giske Ursin; Michael F. Press; Paul Brennan; Suleeporn Sangrajrang; Valerie Gaborieau; Fabrice Odefrey; Chen-Yang Shen; Pei-Ei Wu; Hui-Chun Wang; Daehee Kang; Keun-Young Yoo; Dong-Young Noh; Sei-Hyun Ahn; Bruce A.J. Ponder; Christopher A. Haiman

Genome-wide association studies have identified FGFR2 as a breast cancer (BC) susceptibility gene in populations of European and Asian descent, but a causative variant has not yet been conclusively identified. We hypothesized that the weaker linkage disequilibrium across this associated region in populations of African ancestry might help refine the set of candidate-causal single nucleotide polymorphisms (SNPs) previously identified by our group. Eight candidate-causal SNPs were evaluated in 1253 African American invasive BC cases and 1245 controls. A significant association with BC risk was found with SNP rs2981578 (unadjusted per-allele odds ratio = 1.20, 95% confidence interval 1.03-1.41, P(trend) = 0.02), with the odds ratio estimate similar to that reported in European and Asian subjects. To extend the fine-mapping, genotype data from the African American studies were analyzed jointly with data from European (n = 7196 cases, 7275 controls) and Asian (n = 3901 cases, 3205 controls) studies. In the combined analysis, SNP rs2981578 was the most strongly associated. Five other SNPs were too strongly correlated to be excluded at a likelihood ratio of < 1/100 relative to rs2981578. Analysis of DNase I hypersensitive sites indicated that only two of these map to highly accessible chromatin, one of which, SNP rs2981578, has previously been implicated in up-regulating FGFR2 expression. Our results demonstrate that the association of SNPs in FGFR2 with BC risk extends to women of African American ethnicity, and illustrate the utility of combining association analysis in datasets of diverse ethnic groups with functional experiments to identify disease susceptibility variants.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Evaluation of linkage of breast cancer to the putative BRCA3 locus on chromosome 13q21 in 128 multiple case families from the Breast Cancer Linkage Consortium

Deborah Thompson; Csilla Szabo; Jon Mangion; Rogier A. Oldenburg; Fabrice Odefrey; Sheila Seal; Rita Barfoot; Karin Kroeze-Jansema; Dawn Teare; Nazneen Rahman; Helene Renard; Graham J. Mann; John L. Hopper; Saundra S. Buys; Irene L. Andrulis; Ruby T. Senie; Mary B. Daly; Dee West; Elaine A. Ostrander; K. Offit; Tamar Peretz; Ana Osorio; Javier Benitez; Katherine L. Nathanson; Olga M. Sinilnikova; Edith Olah; Yves Jean Bignon; Pablo Ruiz; Michael D. Badzioch; Hans F. A. Vasen

The known susceptibility genes for breast cancer, including BRCA1 and BRCA2, only account for a minority of the familial aggregation of the disease. A recent study of 77 multiple case breast cancer families from Scandinavia found evidence of linkage between the disease and polymorphic markers on chromosome 13q21. We have evaluated the contribution of this candidate “BRCA3” locus to breast cancer susceptibility in 128 high-risk breast cancer families of Western European ancestry with no identified BRCA1 or BRCA2 mutations. No evidence of linkage was found. The estimated proportion (α) of families linked to a susceptibility locus at D13S1308, the location estimated by Kainu et al. [(2000) Proc. Natl. Acad. Sci. USA 97, 9603–9608], was 0 (upper 95% confidence limit 0.13). Adjustment for possible bias due to selection of families on the basis of linkage evidence at BRCA2 did not materially alter this result (α = 0, upper 95% confidence limit 0.18). The proportion of linked families reported by Kainu et al. (0.65) is excluded with a high degree of confidence in our dataset [heterogeneity logarithm of odds (HLOD) at α = 0.65 was −11.0]. We conclude that, if a susceptibility gene does exist at this locus, it can only account for a small proportion of non-BRCA1/2 families with multiple cases of early-onset breast cancer.


Breast Cancer Research | 2010

A PALB2 mutation associated with high risk of breast cancer

Melissa C. Southey; Zhi L Teo; James G. Dowty; Fabrice Odefrey; Daniel J. Park; Marc Tischkowitz; Nelly Sabbaghian; Carmel Apicella; Graham Byrnes; Ingrid Winship; Laura Baglietto; Graham G. Giles; David E. Goldgar; William D. Foulkes; John L. Hopper

IntroductionAs a group, women who carry germline mutations in partner and localizer of breast cancer 2 susceptibility protein (PALB2) are at increased risk of breast cancer. Little is known about by how much or whether risk differs by mutation or family history, owing to the paucity of studies of cases unselected for family history.MethodsWe screened 1,403 case probands for PALB2 mutations in a population-based study of Australian women with invasive breast cancer stratified by age at onset. The age-specific risk of breast cancer was estimated from the cancer histories of first- and second-degree relatives of mutation-carrying probands using a modified segregation analysis that included a polygenic modifier and was conditioned on the carrier case proband. Further screening for PALB2 c.3113G > A (W1038X) was conducted for 779 families with multiple cases of breast cancer ascertained through family cancer clinics in Australia and New Zealand and 764 population-based controls.ResultsWe found five independent case probands in the population-based sample with the protein-truncating mutation PALB2 c.3113G > A (W1038X); 2 of 695 were diagnosed before age 40 years and 3 of 708 were diagnosed when between ages 40 and 59 years. Both of the two early-onset carrier case probands had very strong family histories of breast cancer. Further testing found that the mutation segregated with breast cancer in these families. No c.3113G > A (W1038X) carriers were found in 764 population-based unaffected controls. The hazard ratio was estimated to be 30.1 (95% confidence interval (CI), 7.5 to 120; P < 0.0001), and the corresponding cumulative risk estimates were 49% (95% CI, 15 to 93) to age 50 and 91% (95% CI, 44 to 100) to age 70. We found another eight families carrying this mutation in 779 families with multiple cases of breast cancer ascertained through family cancer clinics.ConclusionsThe PALB2 c.3113G > A mutation appears to be associated with substantial risks of breast cancer that are of clinical relevance.


Cancer Epidemiology, Biomarkers & Prevention | 2012

Common Breast Cancer Susceptibility Variants in LSP1 and RAD51L1 Are Associated with Mammographic Density Measures that Predict Breast Cancer Risk

Celine M. Vachon; Christopher G. Scott; Peter A. Fasching; Per Hall; Rulla M. Tamimi; Jingmei Li; Jennifer Stone; Carmel Apicella; Fabrice Odefrey; Gretchen L. Gierach; Sebastian M. Jud; Katharina Heusinger; Matthias W. Beckmann; Marina Pollán; Pablo Fernández-Navarro; A Gonzalez-Neira; Javier Benitez; C. H. van Gils; M Lokate; N. C Onland-Moret; P.H.M. Peeters; J Brown; Jean Leyland; Jajini S. Varghese; D. F Easton; D. J Thompson; Robert Luben; R Warren; Nicholas J. Wareham; Ruth J. F. Loos

Background: Mammographic density adjusted for age and body mass index (BMI) is a heritable marker of breast cancer susceptibility. Little is known about the biologic mechanisms underlying the association between mammographic density and breast cancer risk. We examined whether common low-penetrance breast cancer susceptibility variants contribute to interindividual differences in mammographic density measures. Methods: We established an international consortium (DENSNP) of 19 studies from 10 countries, comprising 16,895 Caucasian women, to conduct a pooled cross-sectional analysis of common breast cancer susceptibility variants in 14 independent loci and mammographic density measures. Dense and nondense areas, and percent density, were measured using interactive-thresholding techniques. Mixed linear models were used to assess the association between genetic variants and the square roots of mammographic density measures adjusted for study, age, case status, BMI, and menopausal status. Results: Consistent with their breast cancer associations, the C-allele of rs3817198 in LSP1 was positively associated with both adjusted dense area (P = 0.00005) and adjusted percent density (P = 0.001), whereas the A-allele of rs10483813 in RAD51L1 was inversely associated with adjusted percent density (P = 0.003), but not with adjusted dense area (P = 0.07). Conclusion: We identified two common breast cancer susceptibility variants associated with mammographic measures of radiodense tissue in the breast gland. Impact: We examined the association of 14 established breast cancer susceptibility loci with mammographic density phenotypes within a large genetic consortium and identified two breast cancer susceptibility variants, LSP1-rs3817198 and RAD51L1-rs10483813, associated with mammographic measures and in the same direction as the breast cancer association. Cancer Epidemiol Biomarkers Prev; 21(7); 1156–. ©2012 AACR.


PLOS ONE | 2013

Whole Exome Sequencing Suggests Much of Non-BRCA1/BRCA2 Familial Breast Cancer Is Due to Moderate and Low Penetrance Susceptibility Alleles

Francisco Javier Gracia-Aznárez; Victoria Fernández; Guillermo Pita; Paolo Peterlongo; Orlando Domínguez; Miguel de la Hoya; Mercedes Durán; Ana Osorio; Leticia Tais Moreno; Anna González-Neira; Juan Manuel Rosa-Rosa; Olga M. Sinilnikova; Sylvie Mazoyer; John R. Hopper; Conchi Lazaro; Melissa C. Southey; Fabrice Odefrey; Siranoush Manoukian; Irene Catucci; Trinidad Caldés; Henry T. Lynch; Florentine S. Hilbers; Christi J. van Asperen; Hans F. A. Vasen; David E. Goldgar; Paolo Radice; Peter Devilee; Javier Benitez

The identification of the two most prevalent susceptibility genes in breast cancer, BRCA1 and BRCA2, was the beginning of a sustained effort to uncover new genes explaining the missing heritability in this disease. Today, additional high, moderate and low penetrance genes have been identified in breast cancer, such as P53, PTEN, STK11, PALB2 or ATM, globally accounting for around 35 percent of the familial cases. In the present study we used massively parallel sequencing to analyze 7 BRCA1/BRCA2 negative families, each having at least 6 affected women with breast cancer (between 6 and 10) diagnosed under the age of 60 across generations. After extensive filtering, Sanger sequencing validation and co-segregation studies, variants were prioritized through either control-population studies, including up to 750 healthy individuals, or case-control assays comprising approximately 5300 samples. As a result, a known moderate susceptibility indel variant (CHEK2 1100delC) and a catalogue of 11 rare variants presenting signs of association with breast cancer were identified. All the affected genes are involved in important cellular mechanisms like DNA repair, cell proliferation and survival or cell cycle regulation. This study highlights the need to investigate the role of rare variants in familial cancer development by means of novel high throughput analysis strategies optimized for genetically heterogeneous scenarios. Even considering the intrinsic limitations of exome resequencing studies, our findings support the hypothesis that the majority of non-BRCA1/BRCA2 breast cancer families might be explained by the action of moderate and/or low penetrance susceptibility alleles.


Cancer Research | 2010

Common genetic variants associated with breast cancer and mammographic density measures that predict disease

Fabrice Odefrey; Jennifer Stone; Lyle C. Gurrin; Graham Byrnes; Carmel Apicella; Gillian S. Dite; Jennifer N. Cawson; Graham G. Giles; Susan A. Treloar; Dallas R. English; John L. Hopper; Melissa C. Southey

Mammographic density for age and body mass index (BMI) is a heritable risk factor for breast cancer. We aimed to determine if recently identified common variants associated with small gradients in breast cancer risk are associated with mammographic density. We genotyped 497 monozygotic and 330 dizygotic twin pairs and 634 of their sisters from 903 families for 12 independent variants. Mammographic dense area, percent dense area, and nondense area were measured by three observers using a computer-thresholding technique. Associations with mammographic density measures adjusted for age, BMI, and other determinants were estimated (a) cross-sectionally using a multivariate normal model for pedigree analysis (P(x)), (b) between sibships, and (c) within sibships using orthogonal transformations of outcomes and exposures. A combined test of association (P(c)) was derived using the independent estimates from b and c. We tested if the distributions of P values across variants differed from the uniform distribution (P(u)). For dense area and percent dense area, the distributions of P(c) values were not uniform (both P(u) <0.007). Consistent with their breast cancer associations, rs3817198 (LSP1) and rs13281615 (8q) were associated with dense area and percent dense area (all P(x) and P(c) <0.05), and rs889312 (MAP3K1), rs2107425 (H19), and rs17468277 (CASP8) were marginally associated with dense area (some P(x) or P(c) <0.05). All associations were independent of menopausal status. At least two common breast cancer susceptibility variants are associated with mammographic density measures that predict breast cancer. These findings could help elucidate how those variants and mammographic density measures are associated with breast cancer susceptibility.


Cancer Research | 2004

Are ATM Mutations 7271T→G and IVS10-6T→G Really High-Risk Breast Cancer-Susceptibility Alleles?

Csilla Szabo; Mieke Schutte; Annegien Broeks; Jeanine J. Houwing-Duistermaat; Yvonne R. Thorstenson; Francine Durocher; Rogier A. Oldenburg; Marijke Wasielewski; Fabrice Odefrey; Deborah Thompson; Arno N. Floore; Jaennelle Kraan; J.G.M. Klijn; Ans van den Ouweland; Teresa Wagner; Peter Devilee; Jacques Simard; Laura J. van 't Veer; David E. Goldgar; Hanne Meijers-Heijboer

Two mutations of the ATM gene were recently suggested to confer breast cancer risks similar to mutations of BRCA1 or BRCA2. Here, we set out to confirm these findings in 961 families with non-BRCA1/BRCA2 breast cancer from diverse geographical regions. We did not detect the ATM 7271T→G mutation in any family. The ATM IVS10–6T→G mutation was detected in eight families, which was similar to its frequency among population-matched control individuals (pooled Mantel-Haenszel odds ratio = 1.60; 95% confidence interval = 0.48 to 5.35; P = 0.44). Bayesian analysis of linkage in the ATM IVS10–6T→G-positive families showed an overall posterior probability of causality for this mutation of 0.008. We conclude that the ATM IVS10–6T→G mutation does not confer a significantly elevated breast cancer risk and that ATM 7271T→G is a rare event in familial breast cancer.

Collaboration


Dive into the Fabrice Odefrey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fleur Hammet

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhi L Teo

University of Melbourne

View shared research outputs
Top Co-Authors

Avatar

Andrew Lonie

University of Melbourne

View shared research outputs
Researchain Logo
Decentralizing Knowledge