Fabrizio Pin
University of Turin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fabrizio Pin.
American Journal of Pathology | 2013
Fabio Penna; Domiziana Costamagna; Fabrizio Pin; Andrea Camperi; Alessandro Fanzani; Elena Chiarpotto; Gabriella Cavallini; Gabriella Bonelli; Francesco M. Baccino; Paola Costelli
Muscle protein wasting in cancer cachexia is a critical problem. The underlying mechanisms are still unclear, although the ubiquitin-proteasome system has been involved in the degradation of bulk myofibrillar proteins. The present work has been aimed to investigate whether autophagic degradation also plays a role in the onset of muscle depletion in cancer-bearing animals and in glucocorticoid-induced atrophy and sarcopenia of aging. The results show that autophagy is induced in muscle in three different models of cancer cachexia and in glucocorticoid-treated mice. In contrast, autophagic degradation in the muscle of sarcopenic animals is impaired but can be reactivated by calorie restriction. These results further demonstrate that different mechanisms are involved in pathologic muscle wasting and that autophagy, either excessive or defective, contributes to the complicated network that leads to muscle atrophy. In this regard, particularly intriguing is the observation that in cancer hosts and tumor necrosis factor α-treated C2C12 myotubes, insulin can only partially blunt autophagy induction. This finding suggests that autophagy is triggered through mechanisms that cannot be circumvented by using classic upstream modulators, prompting us to identify more effective approaches to target this proteolytic system.
Journal of Cachexia, Sarcopenia and Muscle | 2011
Fabio Penna; Sílvia Busquets; Fabrizio Pin; Míriam Toledo; Francesco M. Baccino; Francisco J. López-Soriano; Paola Costelli; Josep M. Argilés
BackgroundCancer cachexia is a syndrome characterized by loss of skeletal muscle protein, depletion of lipid stores, anorexia, weakness, and perturbations of the hormonal homeostasis. Despite several therapeutic approaches described in the past, effective interventions countering cancer cachexia are still lacking.MethodsThe present work was aimed to verify the ability of eicosapentaenoic acid (EPA) to prevent the muscle depletion in Lewis lung carcinoma-bearing mice and to test the ability of endurance exercise training to increase the EPA effect.ResultsEPA alone did not prevent the muscle loss induced by tumor growth while the combination with exercise induced a partial rescue of muscle strength and mass. Moreover, the association of EPA and exercise reduced the dramatic PAX-7 accumulation and stimulated the increase of PCG-1 protein.ConclusionsOverall, the present data suggest that exercise is an effective tool that should be added for combined therapeutic approaches against cancer cachexia.
Scientific Reports | 2016
Zaira Aversa; Fabrizio Pin; S. Lucia; Fabio Penna; Roberto Verzaro; Maurizio Fazi; Giuseppina Colasante; Andrea Tirone; Filippo Rossi Fanelli; C. Ramaccini; Paola Costelli; Maurizio Muscaritoli
Basal rates of autophagy can be markedly accelerated by environmental stresses. Recently, autophagy has been involved in cancer-induced muscle wasting. Aim of this study has been to evaluate if autophagy is induced in the skeletal muscle of cancer patients. The expression (mRNA and protein) of autophagic markers has been evaluated in intraoperative muscle biopsies. Beclin-1 protein levels were increased in cachectic cancer patients, suggesting autophagy induction. LC3B-I protein levels were not significantly modified. LC3B-II protein levels were significantly increased in cachectic cancer patients suggesting either increased autophagosome formation or reduced autophagosome turnover. Conversely, p62 protein levels were increased in cachectic and non-cachectic cancer patients, suggesting impaired autophagosome clearance. As for mitophagy, both Bnip3 and Nix/Bnip3L show a trend to increase in cachectic patients. In the same patients, Parkin levels significantly increased, while PINK1 was unchanged. At gene level, Beclin-1, p-62, BNIP3, NIX/BNIP3L and TFEB mRNAs were not significantly modulated, while LC3B and PINK1 mRNA levels were increased and decreased, respectively, in cachectic cancer patients. Autophagy is induced in the skeletal muscle of cachectic cancer patients, although autophagosome clearance appears to be impaired. Further studies should evaluate whether modulation of autophagy could represent a relevant therapeutic strategy in cancer cachexia.
Oncotarget | 2015
Fabrizio Pin; Sílvia Busquets; Míriam Toledo; Andrea Camperi; Francisco J. López-Soriano; Paola Costelli; Josep M. Argilés; Fabio Penna
Cancer cachexia is a syndrome characterized by loss of skeletal muscle mass, inflammation, anorexia and anemia, contributing to patient fatigue and reduced quality of life. In addition to nutritional approaches, exercise training (EX) has been proposed as a suitable tool to manage cachexia. In the present work the effect of mild exercise training, coupled to erythropoietin (EPO) administration to prevent anemia, has been tested in tumor-bearing mice. In the C26 hosts, acute exercise does not prevent and even worsens muscle wasting. Such pattern is prevented by EPO co-administration or by the adoption of a chronic exercise protocol. EX and EPO co-treatment spares oxidative myofibers from atrophy and counteracts the oxidative to glycolytic shift, inducing PGC-1α. LLC hosts are responsive to exercise and their treatment with the EX-EPO combination prevents the loss of muscle strength and the onset of mitochondrial ultrastructural alterations, while increases muscle oxidative capacity and intracellular ATP content, likely depending on PGC-1α induction and mitophagy promotion. Consistently, muscle-specific PGC-1α overexpression prevents LLC-induced muscle atrophy and Atrogin-1 hyperexpression. Overall, the present data suggest that low intensisty exercise can be an effective tool to be included in combined therapeutic approaches against cancer cachexia, provided that anemia is coincidently treated in order to enhance the beneficial action of exercise.
Journal of Cachexia, Sarcopenia and Muscle | 2016
Elisabetta Ferraro; Fabrizio Pin; Stefania Gorini; Laura Pontecorvo; Alberto Ferri; Vincenzo Mollace; Paola Costelli; Giuseppe Rosano
The loss of muscle mass (sarcopenia) and the associated reduced muscle strength are key limiting factors for elderly peoples quality of life. Improving muscle performance does not necessarily correlate with increasing muscle mass. In fact, particularly in the elderly, the main explanation for muscle weakness is a reduction of muscle quality rather than a loss of muscle mass, and the main goal to be achieved is to increase muscle strength. The effectiveness of Trimetazidine (TMZ) in preventing muscle functional impairment during ageing was assessed in our laboratory.
Journal of Cachexia, Sarcopenia and Muscle | 2017
Francesca Molinari; Fabrizio Pin; Stefania Gorini; Sergio Chiandotto; Laura Pontecorvo; Fabio Penna; Emanuele Rizzuto; Simona Pisu; Antonio Musarò; Paola Costelli; Giuseppe Rosano; Elisabetta Ferraro
Cancer cachexia is characterized by muscle depletion and exercise intolerance caused by an imbalance between protein synthesis and degradation and by impaired myogenesis. Myofibre metabolic efficiency is crucial so as to assure optimal muscle function. Some drugs are able to reprogram cell metabolism and, in some cases, to enhance metabolic efficiency. Based on these premises, we chose to investigate the ability of the metabolic modulator trimetazidine (TMZ) to counteract skeletal muscle dysfunctions and wasting occurring in cancer cachexia.
PLOS ONE | 2012
Fabio Penna; Fabrizio Pin; Domiziana Costamagna; Patrizia Reffo; Francesco M. Baccino; Gabriella Bonelli; Paola Costelli
Differently from the antiapoptotic action most commonly assigned to peroxisome proliferators (PPs), we demonstrated that some of them, clofibrate (CF) in particular, display clearcut apoptogenic properties on rat hepatoma cell lines. We and others could confirm that CF as well as various other PPs can induce apoptosis in a variety of cells, including human liver, breast and lung cancer cell lines. The present study was aimed at investigating the cytotoxic action of CF on a neoplastic line of different origin, the human T leukemia Jurkat cells. We observed that CF rapidly triggers an extensive and morphologically typical apoptotic process on Jurkat cells, though not in primary T cells, which is completely prevented by the polycaspase inhibitor zVADfmk. Gene silencing studies demonstrated that CF-induced apoptosis in Jurkat cells is partially dependent on activation of caspase 2. Looking for a possible trigger of caspase 2 activation, we observed increased levels of phosphorylated eIF2α and JNK in CF-treated cells. Moreover, intracellular Ca2+ homeostasis was perturbed. Together, these findings are suggestive for the occurrence of ER stress, an event that is known to have the potential to activate caspase 2. The present observations demonstrate that CF induces in Jurkat cells a very fast and extensive apoptosis, that involves induction of ER stress and activation of caspases 2 and 3. Since apoptosis in Jurkat cells occurs at pharmacologically relevant concentrations of CF, the present findings encourage further in depth analysis in order to work out the potential implications of CF cytotoxcity on leukemic cells.
Nature Communications | 2017
Marco Segatto; Raffaella Fittipaldi; Fabrizio Pin; Roberta Sartori; Kyung Ko; Hossein Zare; Claudio Fenizia; Gianpietro Zanchettin; Elisa Sefora Pierobon; Shinji Hatakeyama; Cosimo Sperti; Stefano Merigliano; Marco Sandri; Panagis Filippakopoulos; Paola Costelli; Vittorio Sartorelli; Giuseppina Caretti
Cancer cachexia is a devastating metabolic syndrome characterized by systemic inflammation and massive muscle and adipose tissue wasting. Although it is responsible for approximately one-third of cancer deaths, no effective therapies are available and the underlying mechanisms have not been fully elucidated. We previously identified the bromodomain and extra-terminal domain (BET) protein BRD4 as an epigenetic regulator of muscle mass. Here we show that the pan-BET inhibitor (+)-JQ1 protects tumor-bearing mice from body weight loss and muscle and adipose tissue wasting. Remarkably, in C26-tumor-bearing mice (+)-JQ1 administration dramatically prolongs survival, without directly affecting tumor growth. By ChIP-seq and ChIP analyses, we unveil that BET proteins directly promote the muscle atrophy program during cachexia. In addition, BET proteins are required to coordinate an IL6-dependent AMPK nuclear signaling pathway converging on FoxO3 transcription factor. Overall, these findings indicate that BET proteins may represent a promising therapeutic target in the management of cancer cachexia.Cachexia is a metabolic syndrome leading to muscle and adipose tissue loss in majority of cancer patients. Here the authors show that, in a mouse model, BET inhibitor JQ1 counteracts muscle and adipose tissue wasting tempering cachexia and prolonging survival through a mechanism unrelated to tumour growth.
Oncotarget | 2017
Andrea Camperi; Fabrizio Pin; Domiziana Costamagna; Fabio Penna; Maria Lopez Menduina; Zaira Aversa; Teresa A. Zimmers; Roberto Verzaro; Raffaella Fittipaldi; Giuseppina Caretti; Francesco M. Baccino; Maurizio Muscaritoli; Paola Costelli
Low circulating levels of vitamin D were associated with decreased muscle strength and physical performance. Along this line, the present study was aimed to investigate: i) the therapeutic potential of vitamin D in cancer-induced muscle wasting; ii) the mechanisms by which vitamin D affects muscle phenotype in tumor-bearing animals. Rats bearing the AH130 hepatoma showed decreased circulating vitamin D compared to control rats, while muscle vitamin D receptor (VDR) mRNA was up-regulated. Both circulating vitamin D and muscle VDR expression increased after vitamin D administration, without exerting appreciable effects on body weight and muscle mass. The effects of vitamin D on muscle cells were studied in C2C12 myocytes. Vitamin D-treated myoblasts did not differentiate properly, fusing only partially and forming multinucleated structures with aberrant shape and low myosin heavy chain content. Vitamin D treatment resulted in VDR overexpression and myogenin down-regulation. Silencing VDR expression in C2C12 cultures abrogated the inhibition of differentiation exerted by vitamin D treatment. These data suggest that VDR overexpression in tumor-bearing animals contributes to muscle wasting by impairing muscle regenerative program. In this regard, attention should be paid when considering vitamin D supplementation to patients affected by chronic pathologies where muscle regeneration may be involved.
Expert Opinion on Investigational Drugs | 2016
Fabio Penna; Fabrizio Pin; Riccardo Ballarò; Francesco M. Baccino; Paola Costelli
Introduction: Cachexia is a syndrome characterized by body weight loss, muscle wasting and metabolic abnormalities, that frequently complicates the management of people affected by chronic diseases. No effective therapy is actually available, although several drugs are under clinical evaluation. Altered energy metabolism markedly contributes to the pathogenesis of cachexia; it can be improved by exercise, which is able to both induce anabolism and inhibit catabolism. Areas covered: This review focuses on exercise mimetics and their potential inclusion in combined protocols to treat cachexia. The authors pay with particular reference to the cancer-associated cachexia. Expert opinion: Even though exercise improves muscle phenotype, most patients retain sedentary habits which are quite difficult to disrupt. Moreover, they frequently present with chronic fatigue and comorbidities that reduce exercise tolerance. For these reasons, drugs mimicking exercise could be beneficial to those who are unable to comply with the practice of physical activity. Since some exercise mimetics may exert serious side effects, further investigations should focus on treatments which maintain their effectiveness on muscle phenotype while remaining tolerable at the same time.