Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fadi Bou-Abdallah is active.

Publication


Featured researches published by Fadi Bou-Abdallah.


Biochimica et Biophysica Acta | 2010

The iron redox and hydrolysis chemistry of the ferritins.

Fadi Bou-Abdallah

BACKGROUND Ferritins are ubiquitous and well-characterized iron storage and detoxification proteins. In bacteria and plants, ferritins are homopolymers composed of H-type subunits, while in vertebrates, they typically consist of 24 similar subunits of two types, H and L. The H-subunit is responsible for the rapid oxidation of Fe(II) to Fe(III) at a dinuclear center, whereas the L-subunit appears to help iron clearance from the ferroxidase center of the H-subunit and support iron nucleation and mineralization. SCOPE OF REVIEW Despite their overall similar structures, ferritins from different origins markedly differ in their iron binding, oxidation, detoxification, and mineralization properties. This chapter provides a brief overview of the structure and function of ferritin, reviews our current knowledge of the process of iron uptake and mineral core formation, and highlights the similarities and differences of the iron oxidation and hydrolysis chemistry in a number of ferritins including those from archaea, bacteria, amphibians, and animals. GENERAL SIGNIFICANCE Prokaryotic ferritins and ferritin-like proteins (Dps) appear to preferentially use H(2)O(2) over O(2) as the iron oxidant during ferritin core formation. While the product of iron oxidation at the ferroxidase centers of these and other ferritins is labile and is retained inside the protein cavity, the iron complex in the di-iron cofactor proteins is stable and remains at the catalytic site. Differences in the identity and affinity of the ferroxidase center ligands to iron have been suggested to influence the distinct reaction pathways in ferritins and the di-iron cofactor enzymes. MAJOR CONCLUSIONS The ferritin 3-fold channels are shown to be flexible structures that allow the entry and exit of different ions and molecules through the protein shell. The H- and L-subunits are shown to have complementary roles in iron oxidation and mineralization, and hydrogen peroxide appears to be a by-product of oxygen reduction at the FC of most ferritins. The di-iron(III) complex at the FC of some ferritins acts as a stable cofactor during iron oxidation rather than a catalytic center where Fe(II) is oxidized at the FC followed by its translocation to the protein cavity.


Journal of Biological Chemistry | 2002

Iron detoxification properties of Escherichia coli bacterioferritin. Attenuation of oxyradical chemistry.

Fadi Bou-Abdallah; Allison Lewin; Nick E. Le Brun; Geoffrey R. Moore; N. Dennis Chasteen

Bacterioferritin (EcBFR) ofEscherichia coli is an iron-mineralizing hemoprotein composed of 24 identical subunits, each containing a dinuclear metal-binding site known as the “ferroxidase center.” The chemistry of Fe(II) binding and oxidation and Fe(III) hydrolysis using H2O2 as oxidant was studied by electrode oximetry, pH-stat, UV-visible spectrophotometry, and electron paramagnetic resonance spin trapping experiments. Absorption spectroscopy data demonstrate the oxidation of two Fe(II) per H2O2 at the ferroxidase center, thus avoiding hydroxyl radical production via Fenton chemistry. The oxidation reaction with H2O2 corresponds to [Fe(II)2-P]Z + H2O2→ [Fe(III)2O-P]Z + H2O, where [Fe(II)2-P]Z represents a diferrous ferroxidase center complex of the protein P with net charge Z and [Fe(III)2O-P]Z a μ-oxo-bridged diferric ferroxidase complex. The mineralization reaction is given by 2Fe2+ + H2O2 + 2H2O → 2FeOOH(core) + 4H+, where two Fe(II) are again oxidized by one H2O2. Hydrogen peroxide is shown to be an intermediate product of dioxygen reduction when O2 is used as the oxidant in both the ferroxidation and mineralization reactions. Most of the H2O2produced from O2 is rapidly consumed in a subsequent ferroxidase reaction with Fe(II) to produce H2O. EPR spin trapping experiments show that the presence of EcBFR greatly attenuates the production of hydroxyl radical during Fe(II) oxidation by H2O2, consistent with the ability of the bacterioferritin to facilitate the pairwise oxidation of Fe(II) by H2O2, thus avoiding odd electron reduction products of oxygen and therefore oxidative damage to the protein and cellular components through oxygen radical chemistry.


Journal of Biological Chemistry | 2002

Iron detoxification properties of E.coli Bacterioferritin: Attenuation of oxyradical chemistry

Fadi Bou-Abdallah; Allison Lewin; Nick E. Le Brun; Geoffry R. Moore; N. Dennis Chasteen

Bacterioferritin (EcBFR) ofEscherichia coli is an iron-mineralizing hemoprotein composed of 24 identical subunits, each containing a dinuclear metal-binding site known as the “ferroxidase center.” The chemistry of Fe(II) binding and oxidation and Fe(III) hydrolysis using H2O2 as oxidant was studied by electrode oximetry, pH-stat, UV-visible spectrophotometry, and electron paramagnetic resonance spin trapping experiments. Absorption spectroscopy data demonstrate the oxidation of two Fe(II) per H2O2 at the ferroxidase center, thus avoiding hydroxyl radical production via Fenton chemistry. The oxidation reaction with H2O2 corresponds to [Fe(II)2-P]Z + H2O2→ [Fe(III)2O-P]Z + H2O, where [Fe(II)2-P]Z represents a diferrous ferroxidase center complex of the protein P with net charge Z and [Fe(III)2O-P]Z a μ-oxo-bridged diferric ferroxidase complex. The mineralization reaction is given by 2Fe2+ + H2O2 + 2H2O → 2FeOOH(core) + 4H+, where two Fe(II) are again oxidized by one H2O2. Hydrogen peroxide is shown to be an intermediate product of dioxygen reduction when O2 is used as the oxidant in both the ferroxidation and mineralization reactions. Most of the H2O2produced from O2 is rapidly consumed in a subsequent ferroxidase reaction with Fe(II) to produce H2O. EPR spin trapping experiments show that the presence of EcBFR greatly attenuates the production of hydroxyl radical during Fe(II) oxidation by H2O2, consistent with the ability of the bacterioferritin to facilitate the pairwise oxidation of Fe(II) by H2O2, thus avoiding odd electron reduction products of oxygen and therefore oxidative damage to the protein and cellular components through oxygen radical chemistry.


Journal of Biological Inorganic Chemistry | 2003

Defining metal ion inhibitor interactions with recombinant human H- and L-chain ferritins and site-directed variants: an isothermal titration calorimetry study.

Fadi Bou-Abdallah; Paolo Arosio; Sonia Levi; Christine Janus-Chandler; N. Dennis Chasteen

Zinc and terbium, inhibitors of iron incorporation in the ferritins, have been used for many years as probes of structure-function relationships in these proteins. Isothermal titration calorimetric and kinetic measurements of Zn(II) and Tb(III) binding and inhibition of Fe(II) oxidation were used to identify and characterize thermodynamically (n, K, ΔH°, ΔS°, and ΔG°) the functionally important binding sites for these metal ions in recombinant human H-chain, L-chain, and H-chain site-directed variant ferritins. The data reveal at least two classes of binding sites for both Zn(II) and Tb(III) in human H-chain ferritin: one strong, corresponding to binding of one metal ion in each of the eight three-fold channels, and the other weak, involving binding at the ferroxidase and nucleation sites of the protein as well as at other weak unidentified binding sites. Zn(II) and Tb(III) binding to recombinant L-chain ferritin showed similar stoichiometries for the strong binding sites within the channels, but fewer weaker binding sites when compared to the H-chain protein. The kinetics and binding data indicate that the binding of Zn(II) and Tb(III) in the three-fold channels, which is the main pathway of iron(II) entry in ferritin, blocks the access of most of the iron to the ferroxidase sites on the interior of the protein, accounting for the strong inhibition by these metal ions of the oxidative deposition of iron in ferritin.


Biochimica et Biophysica Acta | 2012

The thermodynamic and binding properties of the transferrins as studied by isothermal titration calorimetry

Fadi Bou-Abdallah; Tyson Terpstra

BACKGROUND In mammals, serum-transferrins transport iron from the neutral environment of the blood to the cytoplasm by receptor-mediated endocytosis. Extensive in-vitro studies have focused on the thermodynamics and kinetics of Fe(3+) binding to a number of transferrins. However, little attention has been given to the thermodynamic characterization of the interaction of transferrin with its receptor. SCOPE OF REVIEW Iron-loaded transferrin (Tf) binds with high affinity to the specific transferrin receptor (TfR) on the cell surface. The Tf-TfR complex is then internalized via receptor mediated endocytosis into an endosome where iron is released. Here, we provide an overview of recent studies that have used ITC to quantify the interaction of various metal ions with transferrin and highlight our current understanding of the thermodynamics of the transferrin-transferrin receptor system at physiological pH. GENERAL SIGNIFICANCE The interaction of the iron-loaded transferrin with the transferrin receptor is a key cellular process that occurs during the normal course of iron metabolism. Understanding the thermodynamics of this interaction is important for iron homeostasis since the physiological requirement of iron must be appropriately maintained to avoid iron-related diseases. MAJOR CONCLUSIONS The thermodynamic data revealed stoichiometric binding of all tested metal ions to transferrin with very high affinities ranging between 10(17) and 10(22)M(-1). Iron-loaded transferrin (monoferric or diferric) is shown to bind avidly (K~10(7)-10(8)M(-1)) to the receptor at neutral pH with a stoichiometry of one Tf molecule per TfR monomer. Significantly, both the N- and the C-lobe contribute to the binding interaction which is shown to be both enthalpically and entropically driven. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders.


Journal of Molecular Recognition | 2009

A loop in the N-lobe of human serum transferrin is critical for binding to the transferrin receptor as revealed by mutagenesis, isothermal titration calorimetry, and epitope mapping.

Anne B. Mason; Shaina L. Byrne; Stephen J. Everse; Samantha E. Roberts; N. Dennis Chasteen; Valerie C. Smith; Ross T. A. MacGillivray; Banu Kandemir; Fadi Bou-Abdallah

Transferrin (TF) is a bilobal transport protein that acquires ferric iron from the diet and holds it tightly within the cleft of each lobe (thereby preventing its hydrolysis). The iron is delivered to actively dividing cells by receptor mediated endocytosis in which diferric TF preferentially binds to TF receptors (TFRs) on the cell surface and the entire complex is taken into an acidic endosome. A combination of lower pH, a chelator, inorganic anions, and the TFR leads to the efficient release of iron from each lobe. Identification of residues/regions within both TF and TFR required for high affinity binding has been an ongoing goal in the field. In the current study, we created human TF (hTF) mutants to identify a region critical to the interaction with the TFR which also constitutes part of an overlapping epitope for two monoclonal antibodies (mAbs) to the N‐lobe, one of which was previously shown to block binding of hTF to the TFR. Four single point mutants, P142A, R143A, K144A, and P145A in the N‐lobe, were placed into diferric hTF. Isothermal titration calorimetry (ITC) revealed that three of the four residues (Pro142, Lys144, and Pro145) in this loop are essential to TFR binding. Additionally, Lys144 is common to the recognition of both mAbs which show different sensitivities to the three other residues. Taken together these studies prove that this loop is required for binding of the N‐lobe of hTF to the TFR, provide a more precise description of the role of each residue in the loop in the interaction with the TFR, and confirm that the N‐lobe is essential to high affinity binding of diferric hTF to TFR. Copyright


PLOS Pathogens | 2014

Iron acquisition in Bacillus cereus: the roles of IlsA and bacillibactin in exogenous ferritin iron mobilization.

Diego Segond; Elise Abi Khalil; Christophe Buisson; Nadine Daou; Mireille Kallassy; Didier Lereclus; Paolo Arosio; Fadi Bou-Abdallah; Christina Nielsen Le Roux

In host-pathogen interactions, the struggle for iron may have major consequences on the outcome of the disease. To overcome the low solubility and bio-availability of iron, bacteria have evolved multiple systems to acquire iron from various sources such as heme, hemoglobin and ferritin. The molecular basis of iron acquisition from heme and hemoglobin have been extensively studied; however, very little is known about iron acquisition from host ferritin, a 24-mer nanocage protein able to store thousands of iron atoms within its cavity. In the human opportunistic pathogen Bacillus cereus, a surface protein named IlsA (Iron-regulated leucine rich surface protein type A) binds heme, hemoglobin and ferritin in vitro and is involved in virulence. Here, we demonstrate that IlsA acts as a ferritin receptor causing ferritin aggregation on the bacterial surface. Isothermal titration calorimetry data indicate that IlsA binds several types of ferritins through direct interaction with the shell subunits. UV-vis kinetic data show a significant enhancement of iron release from ferritin in the presence of IlsA indicating for the first time that a bacterial protein might alter the stability of the ferritin iron core. Disruption of the siderophore bacillibactin production drastically reduces the ability of B. cereus to utilize ferritin for growth and results in attenuated bacterial virulence in insects. We propose a new model of iron acquisition in B. cereus that involves the binding of IlsA to host ferritin followed by siderophore assisted iron uptake. Our results highlight a possible interplay between a surface protein and a siderophore and provide new insights into host adaptation of B. cereus and general bacterial pathogenesis.


Biochimica et Biophysica Acta | 2013

Iron release from ferritin by flavin nucleotides.

Galina Melman; Fadi Bou-Abdallah; Eleanor Vane; Poli Maura; Paolo Arosio; Artem Melman

BACKGROUND Extensive in-vitro studies have focused on elucidating the mechanism of iron uptake and mineral core formation in ferritin. However, despite a plethora of studies attempting to characterize iron release under different experimental conditions, the in-vivo mobilization of iron from ferritin remains poorly understood. Several iron-reductive mobilization pathways have been proposed including, among others, flavin mononucleotides, ascorbate, glutathione, dithionite, and polyphenols. Here, we investigate the kinetics of iron release from ferritin by reduced flavin nucleotide, FMNH2, and discuss the physiological significance of this process in-vivo. METHODS Iron release from horse spleen ferritin and recombinant human heteropolymer ferritin was followed by the change in optical density of the Fe(II)-bipyridine complex using a Cary 50 Bio UV-Vis spectrophotometer. Oxygen consumption curves were followed on a MI 730 Clark oxygen microelectrode. RESULTS The reductive mobilization of iron from ferritin by the nonenzymatic FMN/NAD(P)H system is extremely slow in the presence of oxygen and might involve superoxide radicals, but not FMNH2. Under anaerobic conditions, a very rapid phase of iron mobilization by FMNH2 was observed. CONCLUSIONS Under normoxic conditions, FMNH2 alone might not be a physiologically significant contributor to iron release from ferritin. GENERAL SIGNIFICANCE There is no consensus on which iron release pathway is predominantly responsible for iron mobilization from ferritin under cellular conditions. While reduced flavin mononucleotide (FMNH2) is one likely candidate for in-vivo ferritin iron removal, its significance is confounded by the rapid oxidation of the latter by molecular oxygen.


ChemMedChem | 2016

The Lysosomal Protein Saposin B Binds Chloroquine

Brian P. Huta; Matthew R. Mehlenbacher; Yan Nie; Xuelei Lai; Chloe Zubieta; Fadi Bou-Abdallah; Robert P. Doyle

Chloroquine (CQ) has been widely used in the treatment of malaria since the 1950s, though toxicity and resistance is increasingly limiting its use in the clinic. More recently, CQ is also becoming recognized as an important therapeutic compound for the treatment of autoimmune disorders and has shown activity as an anticancer agent. However, the full extent of CQ pharmacology in humans is still unclear. Herein, we demonstrate that the lysosomal protein saposin B (sapB), critical for select lipid degradation, binds CQ with implications for both CQ function and toxicity. Using isothermal titration calorimetry (ITC) and fluorescence quenching experiments, CQ was shown to bind to the dimeric form of sapB at both pH 5.5 and pH 7.4 with an average binding affinity of 2.3×104 m−1. X‐ray crystallography confirmed this, and the first complete crystal structure of sapB with a bound small molecule (CQ) is reported. The results suggest that sapB might play a role in mitigating CQ‐based toxicity and that sapB might itself be overwhelmed by CQ causing impaired lipid degradation.


RSC Advances | 2016

Toward hemocompatible self-assembling antimicrobial nanofibers: understanding the synergistic effect of supramolecular structure and PEGylation on hemocompatibility

Dawei Xu; Qian Ran; Yang Xiang; Linhai Jiang; Britannia M. Smith; Fadi Bou-Abdallah; Reidar Lund; Zhongjun Li; He Dong

A significant challenge associated with systemic delivery of cationic antimicrobial peptides and polymers lies in their limited hemocompatibility toward vast numbers of circulating red blood cells (RBCs). Supramolecular assembly of cationic peptides and polymers can be an effective strategy to develop an array of antimicrobial nanomaterials with tunable material structures, stability and thus optimized bioactivity to overcome some of the existing challenges associated with conventional antimicrobials. In this work, we will demonstrate the supramolecular design of self-assembling antimicrobial nanofibers (SAANs) which have tunable supramolecular nanostructures, stability, internal molecular packing and surface chemistry through self-assembly of de novo designed cationic peptides and peptide-PEG conjuguates. The interaction of the SAANs with human RBCs was evaluated in a stringent biological assay (beyond a traditional hemolysis assay) where both hemolytic and eryptotic activity were examined to establish a fundamental understanding on the correlation between material structure and hemocompatibility. It was found that although the SAANs showed moderate hemolytic activities, their abilities to induce eryptosis vary significantly and are much more sensitive to the internal molecular packing, supramolecular nanostructure and stability of the nanofiber. Improved hemocompatibility requires PEGylation on stable supramolecular nanofibers composed of highly organized β-sheet structure while PEG conjugation on weakly packed nanofibers composed of partially denatured β-sheets did not show improvement. The current study reveals the fundamental mechanism involved in the selective hemocompatibility improvement of the SAANs upon PEG conjugation. The structure-activity relationship developed in this study will provide important guidance for the future design of a broader family of peptide and polymer-based assemblies with optimized antimicrobial activity and hemocompatibility.

Collaboration


Dive into the Fadi Bou-Abdallah's collaboration.

Top Co-Authors

Avatar

N. Dennis Chasteen

University of New Hampshire

View shared research outputs
Top Co-Authors

Avatar

Paolo Arosio

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Paolo Arosio

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar

Britannia M. Smith

State University of New York at Potsdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sonia Levi

Vita-Salute San Raffaele University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guanghua Zhao

University of New Hampshire

View shared research outputs
Researchain Logo
Decentralizing Knowledge