Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fadie T. Coleman is active.

Publication


Featured researches published by Fadie T. Coleman.


Infection and Immunity | 2000

Acquisition of Expression of the Pseudomonas aeruginosa ExoU Cytotoxin Leads to Increased Bacterial Virulence in a Murine Model of Acute Pneumonia and Systemic Spread

Markus Allewelt; Fadie T. Coleman; Martha Grout; Gregory P. Priebe; Gerald B. Pier

ABSTRACT Pseudomonas aeruginosa is the nosocomial bacterial pathogen most commonly isolated from the respiratory tract. Animal models of this infection are extremely valuable for studies of virulence and immunity. We thus evaluated the utility of a simple model of acute pneumonia for analyzing P. aeruginosa virulence by characterizing the course of bacterial infection in BALB/c mice following application of bacteria to the nares of anesthetized animals. Bacterial aspiration into the lungs was rapid, and 67 to 100% of the inoculum could be recovered within minutes from the lungs, with 0.1 to 1% of the inoculum found intracellularly shortly after infection. At later time points up to 10% of the bacteria were intracellular, as revealed by gentamicin exclusion assays on single-cell suspensions of infected lungs. Expression of exoenzyme U (ExoU) by P. aeruginosa is associated with a cytotoxic effect on epithelial cells in vitro and virulence in animal models. Insertional mutations in the exoU gene confer a noncytotoxic phenotype on mutant strains and decrease virulence for animals. We used the model of acute pneumonia to determine whether introduction of the exoUgene into noncytotoxic strains of P. aeruginosa lacking this gene affected virulence. Seven phenotypically noncytotoxicP. aeruginosa strains were transformed with pUCP19exoUspcU which carries the exoU gene and its associated chaperone. Three of these strains became cytotoxic to cultured epithelial cells in vitro. These strains all secreted ExoU, as confirmed by detection of the ExoU protein with specific antisera. The 50% lethal dose of exoU-expressing strains was significantly lower for all three P. aeruginosa isolates carrying plasmid pUCP19exoUspcU than for the isogenicexoU-negative strains. mRNA specific for ExoU was readily detected in the lungs of animals infected with the transformed P. aeruginosa strains. Introduction of the exoU gene confers a cytotoxic phenotype on some, but not all, otherwise-noncytotoxic P. aeruginosa strains and, for recombinant strains that could express ExoU, there was markedly increased virulence in a murine model of acute pneumonia and systemic spread.


Infection and Immunity | 2001

Role of alginate O acetylation in resistance of mucoid Pseudomonas aeruginosa to opsonic phagocytosis

Gerald B. Pier; Fadie T. Coleman; Martha Grout; Michael J. Franklin; Dennis E. Ohman

ABSTRACT Establishment and maintenance of chronic lung infections with mucoid Pseudomonas aeruginosa in patients with cystic fibrosis (CF) require that the bacteria avoid host defenses. Elaboration of the extracellular, O-acetylated mucoid exopolysaccharide, or alginate, is a major microbial factor in resistance to immune effectors. Here we show that O acetylation of alginate maximizes the resistance of mucoid P. aeruginosa to antibody-independent opsonic killing and is the molecular basis for the resistance of mucoid P. aeruginosa to normally nonopsonic but alginate-specific antibodies found in normal human sera and sera of infected CF patients. O acetylation of alginate appears to be critical for P. aeruginosa resistance to host immune effectors in CF patients.


Journal of Immunology | 2001

Transgenic Cystic Fibrosis Mice Exhibit Reduced Early Clearance of Pseudomonas aeruginosa from the Respiratory Tract

Torsten H. Schroeder; Nina Reiniger; Gloria Meluleni; Martha Grout; Fadie T. Coleman; Gerald B. Pier

The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) has been proposed to be an epithelial cell receptor for Pseudomonas aeruginosa involved in bacterial internalization and clearance from the lung. We evaluated the role of CFTR in clearing P. aeruginosa from the respiratory tract using transgenic CF mice that carried either the ΔF508 Cftr allele or an allele with a Cftr stop codon (S489X). Intranasal application achieved P. aeruginosa lung infection in inbred C57BL/6 ΔF508 Cftr mice, whereas ΔF508 Cftr and S489X Cftr outbred mice required tracheal application of the inoculum to establish lung infection. CF mice showed significantly less ingestion of LPS-smooth P. aeruginosa by lung cells and significantly greater bacterial lung burdens 4.5 h postinfection than C57BL/6 wild-type mice. Microscopy of infected mouse and rhesus monkey tracheas clearly demonstrated ingestion of P. aeruginosa by epithelial cells in wild-type animals, mostly around injured areas of the epithelium. Desquamating cells loaded with P. aeruginosa could also be seen in these tissues. No difference was found between CF and wild-type mice challenged with an LPS-rough mucoid isolate of P. aeruginosa lacking the CFTR ligand. Thus, transgenic CF mice exhibit decreased clearance of P. aeruginosa and increased bacterial burdens in the lung, substantiating a key role for CFTR-mediated bacterial ingestion in lung clearance of P. aeruginosa.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Hypersusceptibility of cystic fibrosis mice to chronic Pseudomonas aeruginosa oropharyngeal colonization and lung infection

Fadie T. Coleman; Simone Mueschenborn; Gloria Meluleni; Christopher Ray; Vincent J. Carey; Sara O. Vargas; Carolyn L. Cannon; Frederick M. Ausubel; Gerald B. Pier

No transgenic cystic fibrosis (CF) mouse model developed to date mimics the major clinical phenotype found in humans with CF, chronic Pseudomonas aeruginosa lung infection. In a transgenic CF transmembrane conductance regulator (cftr) mouse colony, we found WT, heterozygous, and homozygous CF mice housed in the same cage became chronically colonized in the oropharynx with environmental P. aeruginosa when the bacterium was present in drinking water. Elimination of P. aeruginosa from drinking water resulted in clearance in most WT and CF heterozygous, but not homozygous mice. For experimental evaluation, a combination of specific animal husbandry techniques and an oral infection route showed cftr−/− mice but not WT mice can be chronically colonized by P. aeruginosa with subsequent lung translocation, yielding a pathologic picture indicative of chronic lung infection. In some instances, mucoid isolates of P. aeruginosa were recovered from lungs, indicating conditions were present for conversion to mucoidy. Overexpression of human CFTR in the lungs of WT mice markedly accelerated the clearance rate of P. aeruginosa, demonstrating that lung levels of CFTR play an important role in defense against infection. P. aeruginosa mutants unable to express the surface polysaccharide alginate or the global regulator GacA were deficient in their ability to colonize the mice. CF mice made potent immune responses to P. aeruginosa outer membrane antigens. Overall, we found that under the proper conditions, transgenic CF mice are hypersusceptible to P. aeruginosa colonization and infection and can be used for evaluations of lung pathophysiology, bacterial virulence, and development of therapies aimed at treating CF lung disease.


Journal of Immunology | 2004

Human Monoclonal Antibodies to Pseudomonas aeruginosa Alginate That Protect against Infection by Both Mucoid and Nonmucoid Strains

Gerald B. Pier; Debra Boyer; Michael J. Preston; Fadie T. Coleman; Nicolas Llosa; Simone Mueschenborn-Koglin; Christian Theilacker; Hannah Goldenberg; Jeffrey Uchin; Gregory P. Priebe; Martha Grout; Marshall R. Posner; Lisa A. Cavacini

Two fully human mAbs specific for epitopes dependent on intact carboxylate groups on the C6 carbon of the mannuronic acid components of Pseudomonas aeruginosa alginate were found to promote phagocytic killing of both mucoid and nonmucoid strains as well as protection against both types of strains in a mouse model of acute pneumonia. The specificity of the mAbs for alginate was determined by ELISA and killing assays. Some strains of P. aeruginosa did not make detectable alginate in vitro, but in vivo protection against lethal pneumonia was obtained and shown to be due to rapid induction of expression of alginate in the murine lung. No protection against strains genetically unable to make alginate was achieved. These mAbs have potential to be passive therapeutic reagents for all strains of P. aeruginosa and the results document that alginate is a target for the proper type of protective Ab even when expressed at low levels on phenotypically nonmucoid strains.


Infection and Immunity | 2003

Construction and characterization of a Pseudomonas aeruginosa mucoid exopolysaccharide-alginate conjugate vaccine.

Christian Theilacker; Fadie T. Coleman; Simone Mueschenborn; Nicolas Llosa; Martha Grout; Gerald B. Pier

ABSTRACT Deterioration of lung function in patients with cystic fibrosis (CF) is closely associated with chronic pulmonary infection with mucoid Pseudomonas aeruginosa. The mucoid exopolysaccharide (MEP) from P. aeruginosa has been shown to induce opsonic antibodies in mice that are protective against this chronic infection. MEP-specific opsonic antibodies are also commonly found in the sera of older CF patients lacking detectable P. aeruginosa infection. When used in a human vaccine trial, however, MEP only minimally induced opsonic antibodies. To evaluate whether conjugation of MEP to a carrier protein could improve its immunogenicity, we bound thiolated MEP to keyhole limpet hemocyanin (KLH) by using succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC) as a linker. In contrast to the native MEP polymer, the MEP-KLH conjugate vaccine induced high titers of MEP-specific immunoglobulin G (IgG) in C3H-HeN mice and in a rabbit. Sera from mice immunized with MEP-KLH conjugate, but not from animals immunized with comparable doses of native MEP, demonstrated opsonic killing activity. Vaccination with MEP-KLH conjugate induced opsonic antibodies broadly cross-reactive to heterologous mucoid strains of P. aeruginosa. Preexisting nonopsonic antibodies to MEP are found in normal human sera, including young CF patients, and their presence impedes the induction of opsonic antibodies. Induction of nonopsonic antibodies by either intraperitoneal injection of MEP or injection or feeding of the cross-reactive antigen, seaweed alginate, reduced the level of overall IgG elicited by follow-up immunization with the MEP-KLH conjugate. However, the opsonic activity was lower only in the sera of MEP-KLH conjugate-immunized mice with preexisting antibodies induced by MEP but not with antibodies induced by seaweed alginate. Immunization with MEP-KLH elicited a significant proportion of antibodies specific to epitopes involving O-acetate residues, and this subpopulation of antibodies mediated opsonic killing of mucoid P. aeruginosa in vitro. These results indicate that conjugation of MEP to KLH significantly enhances its immunogenicity and the elicitation of opsonic antibodies in mice and rabbits, that the conjugate induces opsonic antibodies in the presence of preexisting nonopsonic antibodies, and that opsonic antibodies to MEP are directed at epitopes that include acetate residues on the uronic acid polymer.


Infection and Immunity | 2003

Protection against fatal Pseudomonas aeruginosa pneumonia in mice after nasal immunization with a live, attenuated aroA deletion mutant.

Gregory P. Priebe; Gloria Meluleni; Fadie T. Coleman; Joanna B. Goldberg; Gerald B. Pier

ABSTRACT Studies of immunity to Pseudomonas aeruginosa have indicated that a variety of potential immunogens can elicit protection in animal models, utilizing both antibody- and cell-mediated immune effectors for protection. To attempt to optimize delivery of multiple protective antigens and elicit a broad range of immune effectors, we produced an aroA deletion mutant of the P. aeruginosa serogroup O2/O5 strain PAO1, designated PAO1ΔaroA. Previously, we reported that this strain elicits high levels of opsonic antibody directed against many serogroup O2/O5 strains after nasal immunization of mice and rabbits. Here, we assessed the protective efficacy of immunization with PAO1ΔaroA against acute fatal pneumonia in mice. After active immunization, high levels of protection were achieved against an ExoU-expressing cytotoxic variant of the parental strain PAO1 at doses up to 1,000-fold greater than the 50% lethal dose. Significant protection against PAO1 and two of four other serogroup O2/O5 strains was also found, but there was no protection against serogroup-heterologous strains. The serogroup O2/O5 strains not protected against were killed in opsonophagocytic assays as efficiently as the strains with which protection was seen, indicating a lack of correlation of protection and opsonic killing within the serogroup. In passive immunization experiments using challenge with wild-type PAO1 or other noncytotoxic members of the O2/O5 serogroup, there was no protection despite the presence of high levels of opsonic antibody in the mouse sera. However, passive immunization did prevent mortality from pneumonia due to the cytotoxic PAO1 variant at low-challenge doses. These data suggest that a combination of humoral and cellular immunity is required for protection against P. aeruginosa lung infections, that such immunity can be elicited by using aroA deletion mutants, and that a multivalent P. aeruginosa vaccine composed of aroA deletion mutants of multiple serogroups holds significant promise.


Infection and Immunity | 2007

Resistance to Pseudomonas aeruginosa Chronic Lung Infection Requires Cystic Fibrosis Transmembrane Conductance Regulator-Modulated Interleukin-1 (IL-1) Release and Signaling through the IL-1 Receptor

Nina Reiniger; Martin M. Lee; Fadie T. Coleman; Christopher Ray; David E. Golan; Gerald B. Pier

ABSTRACT Innate immunity is critical for clearing Pseudomonas aeruginosa from the lungs. In response to P. aeruginosa infection, a central transcriptional regulator of innate immunity—NF-κB—is translocated within 15 min to the nuclei of respiratory epithelial cells expressing wild-type (WT) cystic fibrosis (CF) transmembrane conductance regulator (CFTR). P. aeruginosa clearance from lungs is impaired in CF, and rapid NF-κB nuclear translocation is defective in cells with mutant or missing CFTR. We used WT and mutant P. aeruginosa and strains of transgenic mice lacking molecules involved in innate immunity to identify additional mediators required for P. aeruginosa-induced rapid NF-κB nuclear translocation in lung epithelia. We found neither Toll-like receptor 2 (TLR2) nor TLR4 nor TLR5 were required for this response. However, both MyD88-deficient mice and interleukin-1 receptor (IL-1R)-deficient mice failed to rapidly translocate NF-κB to the nuclei of respiratory epithelial cells in response to P. aeruginosa. Cultured human bronchial epithelial cells rapidly released IL-1β in response to P. aeruginosa; this process was maximized by expression of WT-CFTR and dramatically muted in cells with ΔF508-CFTR. The IL-1R antagonist blocked P. aeruginosa-induced NF-κB nuclear translocation. Oral inoculation via drinking water of IL-1R knockout mice resulted in higher rates of lung colonization and elevated P. aeruginosa-specific antibody titers in a manner analogous to that of CFTR-deficient mice. Overall, rapid IL-1 release and signaling through IL-1R represent key steps in the innate immune response to P. aeruginosa infection, and this process is deficient in cells lacking functional CFTR.


Infection and Immunity | 2004

The galU Gene of Pseudomonas aeruginosa is required for corneal infection and efficient systemic spread following pneumonia but not for infection confined to the lung.

Gregory P. Priebe; Charles R. Dean; Tanweer Zaidi; Gloria Meluleni; Fadie T. Coleman; Yamara S. Coutinho; Michael J. Noto; Teresa A. Urban; Gerald B. Pier; Joanna B. Goldberg

ABSTRACT Acute pneumonias and corneal infections due to Pseudomonas aeruginosa are typically caused by lipopolysaccharide (LPS)-smooth strains. In cystic fibrosis patients, however, LPS-rough strains of P. aeruginosa, which lack O antigen, can survive in the lung and cause chronic infection. It is not clear whether an LPS-rough phenotype affects cytotoxicity related to the type III secretion system (TTSS). We previously reported that interruption of the galU gene in P. aeruginosa results in production of a rough LPS and truncated LPS core. Here we evaluated the role of the galU gene in the pathogenesis of murine lung and eye infections and in cytotoxicity due to the TTSS effector ExoU. We studied galU mutants of strain PAO1, of its cytotoxic variant expressing ExoU from a plasmid, and of the inherently cytotoxic strain PA103. The galU mutants were more serum sensitive than the parental strains but remained cytotoxic in vitro. In a corneal infection model, the galU mutants were significantly attenuated. In an acute pneumonia model, the 50% lethal doses of the galU mutants were higher than those of the corresponding wild-type strains, yet these mutants could cause mortality and severe pneumonia, as judged by histology, even with minimal systemic spread. These findings suggest that the galU gene is required for corneal infection and for efficient systemic spread following lung infection but is not required for infection confined to the lung. Host defenses in the lung appear to be insufficient to control infection with LPS-rough P. aeruginosa when local bacterial levels are high.


Infection and Immunity | 2002

Construction and Characterization of a Live, Attenuated aroA Deletion Mutant of Pseudomonas aeruginosa as a Candidate Intranasal Vaccine

Gregory P. Priebe; Mary M. Brinig; K Hatano; Martha Grout; Fadie T. Coleman; Gerald B. Pier; Joanna B. Goldberg

ABSTRACT Antibodies to the lipopolysaccharide O antigen of Pseudomonas aeruginosa mediate high-level immunity, but protective epitopes have proven to be poorly immunogenic, while nonprotective or minimally protective O-antigen epitopes often elicit the best immune responses. With the goal of developing a broadly protective P. aeruginosa vaccine, we used a gene replacement system based on the Flp recombinase to construct an unmarked aroA deletion mutant of the P. aeruginosa serogroup O2/O5 strain PAO1. The resultant aroA deletion mutant of PAO1 is designated PAO1ΔaroA. The aroA deletion was confirmed by both PCR and failure of the mutant to grow on minimal media lacking aromatic amino acids. When evaluated for safety and immunogenicity in mice, PAO1ΔaroA could be applied either intranasally or intraperitoneally at doses up to 5 × 109 CFU per mouse without adverse effects. No dissemination of PAO1ΔaroA to blood, liver, or spleen was detected after intranasal application, and histological evidence of pneumonia was minimal. Intranasal immunization of mice and rabbits elicited high titers of immunoglobulin G to whole bacterial cells and to heat-stable bacterial antigens of all seven prototypic P. aeruginosa serogroup O2/O5 strains. The mouse antisera mediated potent phagocytic killing of most of the prototypic serogroup O2/O5 strains, while the rabbit antisera mediated phagocytic killing of several serogroup-heterologous strains in addition to killing all O2/O5 strains. This live, attenuated P. aeruginosa strain PAO1ΔaroA appears to be safe for potential use as an intranasal vaccine and elicits high titers of opsonic antibodies against multiple strains of the P. aeruginosa O2/O5 serogroup.

Collaboration


Dive into the Fadie T. Coleman's collaboration.

Top Co-Authors

Avatar

Gerald B. Pier

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory P. Priebe

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian Theilacker

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge