Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Martha Grout is active.

Publication


Featured researches published by Martha Grout.


Science | 1996

Role of Mutant CFTR in Hypersusceptibility of Cystic Fibrosis Patients to Lung Infections

Gerald B. Pier; Martha Grout; Tanweer Zaidi; John C. Olsen; Larry G. Johnson; James R. Yankaskas; J B Goldberg

Cystic fibrosis (CF) patients are hypersusceptible to chronic Pseudomonas aeruginosa lung infections. Cultured human airway epithelial cells expressing the ΔF508 allele of the cystic fibrosis transmembrane conductance regulator (CFTR) were defective in uptake of P. aeruginosa compared with cells expressing the wild-type allele. Pseudomonas aeruginosa lipopolysaccharide (LPS)-core oligosaccharide was identified as the bacterial ligand for epithelial cell ingestion; exogenous oligosaccharide inhibited bacterial ingestion in a neonatal mouse model, resulting in increased amounts of bacteria in the lungs. CFTR may contribute to a host-defense mechanism that is important for clearance of P. aeruginosa from the respiratory tract.


Nature | 1998

Salmonella typhi uses CFTR to enter intestinal epithelial cells.

Gerald B. Pier; Martha Grout; Tanweer Zaidi; Gloria Meluleni; Simone Mueschenborn; George Banting; Rosemary Ratcliff; Martin J. Evans; William H. Colledge

Homozygous mutations of the cystic fibrosis transmembrane conductance regulator (CFTR) cause cystic fibrosis (CF). In the heterozygous state, increased resistance to infectious diseases may maintain mutant CFTR alleles at high levels in selected populations. Here we investigate whether typhoid fever could be one such disease. The disease is initiated when Salmonella typhi enters gastrointestinal epithelial cells for submucosal translocation. We found that S. typhi, but not the related murine pathogen S. typhimurium, uses CFTR for entry into epithelial cells. Cells expressing wild-type CFTR internalized more S. typhi than isogenic cells expressing the most common CFTR mutation, a phenylalanine deleted at residue 508 (Δ508). Monoclonal antibodies and synthetic peptides containing a sequence corresponding to the first predicted extracellular domain of CFTR inhibited uptake of S. typhi. Heterozygous ΔF508 Cftr mice translocated 86% fewer S. typhi into the gastrointestinal submucosa than wild-type Cftr mice; no translocation occurred in ΔF508 Cftr homozygous mice. The Cftr genotype had no effect on the translocation of S. typhimurium. Immunoelectron microscopy revealed that more CFTR bound to S. typhi in the submucosa of Cftr wild-type mice than in ΔF508 heterozygous mice. We conclude that diminished levels of CFTR in heterozygotes may decrease susceptibility to typhoid fever.


Infection and Immunity | 2000

Acquisition of Expression of the Pseudomonas aeruginosa ExoU Cytotoxin Leads to Increased Bacterial Virulence in a Murine Model of Acute Pneumonia and Systemic Spread

Markus Allewelt; Fadie T. Coleman; Martha Grout; Gregory P. Priebe; Gerald B. Pier

ABSTRACT Pseudomonas aeruginosa is the nosocomial bacterial pathogen most commonly isolated from the respiratory tract. Animal models of this infection are extremely valuable for studies of virulence and immunity. We thus evaluated the utility of a simple model of acute pneumonia for analyzing P. aeruginosa virulence by characterizing the course of bacterial infection in BALB/c mice following application of bacteria to the nares of anesthetized animals. Bacterial aspiration into the lungs was rapid, and 67 to 100% of the inoculum could be recovered within minutes from the lungs, with 0.1 to 1% of the inoculum found intracellularly shortly after infection. At later time points up to 10% of the bacteria were intracellular, as revealed by gentamicin exclusion assays on single-cell suspensions of infected lungs. Expression of exoenzyme U (ExoU) by P. aeruginosa is associated with a cytotoxic effect on epithelial cells in vitro and virulence in animal models. Insertional mutations in the exoU gene confer a noncytotoxic phenotype on mutant strains and decrease virulence for animals. We used the model of acute pneumonia to determine whether introduction of the exoUgene into noncytotoxic strains of P. aeruginosa lacking this gene affected virulence. Seven phenotypically noncytotoxicP. aeruginosa strains were transformed with pUCP19exoUspcU which carries the exoU gene and its associated chaperone. Three of these strains became cytotoxic to cultured epithelial cells in vitro. These strains all secreted ExoU, as confirmed by detection of the ExoU protein with specific antisera. The 50% lethal dose of exoU-expressing strains was significantly lower for all three P. aeruginosa isolates carrying plasmid pUCP19exoUspcU than for the isogenicexoU-negative strains. mRNA specific for ExoU was readily detected in the lungs of animals infected with the transformed P. aeruginosa strains. Introduction of the exoU gene confers a cytotoxic phenotype on some, but not all, otherwise-noncytotoxic P. aeruginosa strains and, for recombinant strains that could express ExoU, there was markedly increased virulence in a murine model of acute pneumonia and systemic spread.


Infection and Immunity | 2001

Role of alginate O acetylation in resistance of mucoid Pseudomonas aeruginosa to opsonic phagocytosis

Gerald B. Pier; Fadie T. Coleman; Martha Grout; Michael J. Franklin; Dennis E. Ohman

ABSTRACT Establishment and maintenance of chronic lung infections with mucoid Pseudomonas aeruginosa in patients with cystic fibrosis (CF) require that the bacteria avoid host defenses. Elaboration of the extracellular, O-acetylated mucoid exopolysaccharide, or alginate, is a major microbial factor in resistance to immune effectors. Here we show that O acetylation of alginate maximizes the resistance of mucoid P. aeruginosa to antibody-independent opsonic killing and is the molecular basis for the resistance of mucoid P. aeruginosa to normally nonopsonic but alginate-specific antibodies found in normal human sera and sera of infected CF patients. O acetylation of alginate appears to be critical for P. aeruginosa resistance to host immune effectors in CF patients.


Infection and Immunity | 2005

Poly-N-Acetylglucosamine Production in Staphylococcus aureus Is Essential for Virulence in Murine Models of Systemic Infection

Andrea Kropec; Tomas Maira-Litran; Kimberly K. Jefferson; Martha Grout; Sarah E. Cramton; Friedrich Götz; Donald A. Goldmann; Gerald B. Pier

ABSTRACT The contribution of the Staphylococcus aureus surface polysaccharide poly-N-acetylglucosamine (PNAG) to virulence was evaluated in three mouse models of systemic infection: bacteremia, renal abscess formation, and lethality following high-dose intraperitoneal (i.p.) infection. Deletion of the intercellular adhesin (ica) locus that encodes the biosynthetic enzymes for PNAG production in S. aureus strains Mn8, Newman, and NCTC 10833 resulted in mutant strains with significantly reduced abilities to maintain bacterial levels in blood following intravenous or i.p. injection, to spread systemically to the kidneys following i.p. injection, or to induce a moribund/lethal state following i.p. infection. In the bacteremia model, neither growth phase nor growth medium used to prepare the S. aureus inoculum affected the conclusion that PNAG production was needed for full virulence. As the SarA regulatory protein has been shown to affect ica transcription, PNAG synthesis, and biofilm formation, we also evaluated S. aureus strains Mn8 and 10833 deleted for the sarA gene in the renal infection model. A decrease in PNAG production was seen in sarA mutants using immunoblots of cell surface extracts but was insufficient to reduce the virulence of sarA-deleted strains in this model. S. aureus strains deleted for the ica genes were much more susceptible to antibody-independent opsonic killing involving human peripheral blood leukocytes and rabbit complement. Thus, PNAG confers on S. aureus resistance to killing mediated by these innate host immune mediators. Overall, PNAG production by S. aureus appears to be a critical virulence factor as assessed in murine models of systemic infection.


Journal of Immunology | 2001

Transgenic Cystic Fibrosis Mice Exhibit Reduced Early Clearance of Pseudomonas aeruginosa from the Respiratory Tract

Torsten H. Schroeder; Nina Reiniger; Gloria Meluleni; Martha Grout; Fadie T. Coleman; Gerald B. Pier

The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) has been proposed to be an epithelial cell receptor for Pseudomonas aeruginosa involved in bacterial internalization and clearance from the lung. We evaluated the role of CFTR in clearing P. aeruginosa from the respiratory tract using transgenic CF mice that carried either the ΔF508 Cftr allele or an allele with a Cftr stop codon (S489X). Intranasal application achieved P. aeruginosa lung infection in inbred C57BL/6 ΔF508 Cftr mice, whereas ΔF508 Cftr and S489X Cftr outbred mice required tracheal application of the inoculum to establish lung infection. CF mice showed significantly less ingestion of LPS-smooth P. aeruginosa by lung cells and significantly greater bacterial lung burdens 4.5 h postinfection than C57BL/6 wild-type mice. Microscopy of infected mouse and rhesus monkey tracheas clearly demonstrated ingestion of P. aeruginosa by epithelial cells in wild-type animals, mostly around injured areas of the epithelium. Desquamating cells loaded with P. aeruginosa could also be seen in these tissues. No difference was found between CF and wild-type mice challenged with an LPS-rough mucoid isolate of P. aeruginosa lacking the CFTR ligand. Thus, transgenic CF mice exhibit decreased clearance of P. aeruginosa and increased bacterial burdens in the lung, substantiating a key role for CFTR-mediated bacterial ingestion in lung clearance of P. aeruginosa.


Journal of Immunology | 2004

Human Monoclonal Antibodies to Pseudomonas aeruginosa Alginate That Protect against Infection by Both Mucoid and Nonmucoid Strains

Gerald B. Pier; Debra Boyer; Michael J. Preston; Fadie T. Coleman; Nicolas Llosa; Simone Mueschenborn-Koglin; Christian Theilacker; Hannah Goldenberg; Jeffrey Uchin; Gregory P. Priebe; Martha Grout; Marshall R. Posner; Lisa A. Cavacini

Two fully human mAbs specific for epitopes dependent on intact carboxylate groups on the C6 carbon of the mannuronic acid components of Pseudomonas aeruginosa alginate were found to promote phagocytic killing of both mucoid and nonmucoid strains as well as protection against both types of strains in a mouse model of acute pneumonia. The specificity of the mAbs for alginate was determined by ELISA and killing assays. Some strains of P. aeruginosa did not make detectable alginate in vitro, but in vivo protection against lethal pneumonia was obtained and shown to be due to rapid induction of expression of alginate in the murine lung. No protection against strains genetically unable to make alginate was achieved. These mAbs have potential to be passive therapeutic reagents for all strains of P. aeruginosa and the results document that alginate is a target for the proper type of protective Ab even when expressed at low levels on phenotypically nonmucoid strains.


Infection and Immunity | 2010

Evaluation of Flagella and Flagellin of Pseudomonas aeruginosa as Vaccines

Victoria L. Campodónico; Nicolas Llosa; Martha Grout; Gerd Döring; Tomas Maira-Litran; Gerald B. Pier

ABSTRACT Pseudomonas aeruginosa is a serious pathogen in hospitalized, immunocompromised, and cystic fibrosis (CF) patients. P. aeruginosa is motile via a single polar flagellum made of polymerized flagellin proteins differentiated into two major serotypes: a and b. Antibodies to flagella delay onset of infection in CF patients, but whether immunity to polymeric flagella and that to monomeric flagellin are comparable has not been addressed, nor has the question of whether such antibodies might negatively impact Toll-like receptor 5 (TLR5) activation, an important component of innate immunity to P. aeruginosa. We compared immunization with flagella and that with flagellin for in vitro effects on motility, opsonic killing, and protective efficacy using a mouse pneumonia model. Antibodies to flagella were superior to antibodies to flagellin at inhibiting motility, promoting opsonic killing, and mediating protection against P. aeruginosa pneumonia in mice. Protection against the flagellar type strains PAK and PA01 was maximal, but it was only marginal against motile clinical isolates from flagellum-immunized CF patients who nonetheless became colonized with P. aeruginosa. Purified flagellin was a more potent activator of TLR5 than were flagella and also elicited higher TLR5-neutralizing antibodies than did immunization with flagella. Antibody to type a but not type b flagella or flagellin inhibited TLR5 activation by whole bacterial cells. Overall, intact flagella appear to be superior for generating immunity to P. aeruginosa, and flagellin monomers might induce antibodies capable of neutralizing innate immunity due to TLR5 activation, but solid immunity to P. aeruginosa based on flagellar antigens may require additional components beyond type a and type b proteins from prototype strains.


Infection and Immunity | 2010

Synthetic β-(1→6)-Linked N-Acetylated and Nonacetylated Oligoglucosamines Used To Produce Conjugate Vaccines for Bacterial Pathogens

Marina L. Gening; Tomas Maira-Litran; Andrea Kropec; David Skurnik; Martha Grout; Yury E. Tsvetkov; Nikolay E. Nifantiev; Gerald B. Pier

ABSTRACT Vaccines for pathogens usually target strain-specific surface antigens or toxins, and rarely is there broad antigenic specificity extending across multiple species. Protective antibodies for bacteria are usually specific for surface or capsular antigens. β-(1→6)-Poly-N-acetyl-d-glucosamine (PNAG) is a surface polysaccharide produced by many pathogens, including Staphylococcus aureus, Escherichia coli, Yersinia pestis, Bordetella pertussis, Acinetobacter baumannii, and others. Protective antibodies to PNAG are elicited when a deacetylated glycoform (deacetylated PNAG [dPNAG]; <30% acetate) is used in conjugate vaccines, whereas highly acetylated PNAG does not induce such antibodies. Chemical derivation of dPNAG from native PNAG is imprecise, so we synthesized both β-(1→6)-d-glucosamine (GlcNH2) and β-(1→6)-d-N-acetylglucosamine (GlcNAc) oligosaccharides with linkers on the reducing termini that could be activated to produce sulfhydryl groups for conjugation to bromoacetyl groups introduced onto carrier proteins. Synthetic 5-mer GlcNH2 (5GlcNH2) or 9GlcNH2 conjugated to tetanus toxoid (TT) elicited mouse antibodies that mediated opsonic killing of multiple S. aureus strains, while the antibodies that were produced in response to 5GlcNAc- or 9GlcNAc-TT did not mediate opsonic killing. Rabbit antibodies to 9GlcNH2-TT bound to PNAG and dPNAG antigens, mediated killing of S. aureus and E. coli, and protected against S. aureus skin abscesses and lethal E. coli peritonitis. Chemical synthesis of a series of oligoglucosamine ligands with defined differences in N acetylation allowed us to identify a conjugate vaccine formulation that generated protective immune responses to two of the most challenging bacterial pathogens. This vaccine could potentially be used to engender protective immunity to the broad range of pathogens that produce surface PNAG.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Protection against Escherichia coli infection by antibody to the Staphylococcus aureus poly-N-acetylglucosamine surface polysaccharide

Nuno Cerca; Tomas Maira-Litran; Kimberly K. Jefferson; Martha Grout; Donald A. Goldmann; Gerald B. Pier

Poly-N-acetylglucosamine (PNAG) is a surface polysaccharide produced by Staphylococcus aureus and Staphyloccus epidermidis and is an effective target for opsonic and protective Ab for these two organisms. Recently, it has been found that Escherichia coli produces an exo-polysaccharide, designated polyglucosamine, that is biochemically indistinguishable from PNAG. We analyzed 30 E. coli strains isolated from urinary tract and neonatal bloodstream infections for the pga locus, PNAG antigen production, and susceptibility to opsonic killing and protection from lethal infection by Ab to PNAG. Twenty-six of 30 strains carried the pga locus, 25 of 30 expressed immunologically detectable PNAG, and 21 of 30 could be killed by rabbit IgG specific for the deacetylated form of the staphylococcal PNAG. Ab to staphylococcal PNAG protected mice against lethality from five different E. coli strains expressing PNAG. PNAG expression by both Gram-negative and Gram-positive organisms could make this antigen a conserved vaccine target for multiple pathogenic species of bacteria.

Collaboration


Dive into the Martha Grout's collaboration.

Top Co-Authors

Avatar

Gerald B. Pier

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tanweer Zaidi

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gregory P. Priebe

Boston Children's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomas Maira-Litran

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Christian Theilacker

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Michael J. Preston

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Debra Boyer

Boston Children's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge