Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Faliu Yi is active.

Publication


Featured researches published by Faliu Yi.


international conference on systems | 2012

Image segmentation: A survey of graph-cut methods

Faliu Yi; Inkyu Moon

As a preprocessing step, image segmentation, which can do partition of an image into different regions, plays an important role in computer vision, objects recognition, tracking and image analysis. Till today, there are a large number of methods present that can extract the required foreground from the background. However, most of these methods are solely based on boundary or regional information which has limited the segmentation result to a large extent. Since the graph cut based segmentation method was proposed, it has obtained a lot of attention because this method utilizes both boundary and regional information. Furthermore, graph cut based method is efficient and accepted world-wide since it can achieve globally optimal result for the energy function. It is not only promising to specific image with known information but also effective to the natural image without any pre-known information. For the segmentation of N-dimensional image, graph cut based methods are also applicable. Due to the advantages of graph cut, various methods have been proposed. In this paper, the main aim is to help researcher to easily understand the graph cut based segmentation approach. We also classify this method into three categories. They are speed up-based graph cut, interactive-based graph cut and shape prior-based graph cut. This paper will be helpful to those who want to apply graph cut method into their research.


Optics Express | 2012

Automated statistical quantification of three-dimensional morphology and mean corpuscular hemoglobin of multiple red blood cells

Inkyu Moon; Bahram Javidi; Faliu Yi; Daniel Boss; Pierre Marquet

In this paper, we present an automated approach to quantify information about three-dimensional (3D) morphology, hemoglobin content and density of mature red blood cells (RBCs) using off-axis digital holographic microscopy (DHM) and statistical algorithms. The digital hologram of RBCs is recorded by a CCD camera using an off-axis interferometry setup and quantitative phase images of RBCs are obtained by a numerical reconstruction algorithm. In order to remove unnecessary parts and obtain clear targets in the reconstructed phase image with many RBCs, the marker-controlled watershed segmentation algorithm is applied to the phase image. Each RBC in the segmented phase image is three-dimensionally investigated. Characteristic properties such as projected cell surface, average phase, sphericity coefficient, mean corpuscular hemoglobin (MCH) and MCH surface density of each RBC is quantitatively measured. We experimentally demonstrate that joint statistical distributions of the characteristic parameters of RBCs can be obtained by our algorithm and efficiently used as a feature pattern to discriminate between RBC populations that differ in shape and hemoglobin content. Our study opens the possibility of automated RBC quantitative analysis suitable for the rapid classification of a large number of RBCs from an individual blood specimen, which is a fundamental step to develop a diagnostic approach based on DHM.


Journal of Biomedical Optics | 2013

Automated segmentation of multiple red blood cells with digital holographic microscopy

Faliu Yi; Inkyu Moon; Bahram Javidi; Daniel Boss; Pierre Marquet

Abstract. We present a method to automatically segment red blood cells (RBCs) visualized by digital holographic microscopy (DHM), which is based on the marker-controlled watershed algorithm. Quantitative phase images of RBCs can be obtained by using off-axis DHM along to provide some important information about each RBC, including size, shape, volume, hemoglobin content, etc. The most important process of segmentation based on marker-controlled watershed is to perform an accurate localization of internal and external markers. Here, we first obtain the binary image via Otsu algorithm. Then, we apply morphological operations to the binary image to get the internal markers. We then apply the distance transform algorithm combined with the watershed algorithm to generate external markers based on internal markers. Finally, combining the internal and external markers, we modify the original gradient image and apply the watershed algorithm. By appropriately identifying the internal and external markers, the problems of oversegmentation and undersegmentation are avoided. Furthermore, the internal and external parts of the RBCs phase image can also be segmented by using the marker-controlled watershed combined with our method, which can identify the internal and external markers appropriately. Our experimental results show that the proposed method achieves good performance in terms of segmenting RBCs and could thus be helpful when combined with an automated classification of RBCs.


Optics Express | 2013

Automated quantitative analysis of 3D morphology and mean corpuscular hemoglobin in human red blood cells stored in different periods

Inkyu Moon; Faliu Yi; Yeon H. Lee; Bahram Javidi; Daniel Boss; Pierre Marquet

Quantitative phase (QP) images of red blood cells (RBCs), which are obtained by off-axis digital holographic microscopy, can provide quantitative information about three-dimensional (3D) morphology of human RBCs and the characteristic properties such as mean corpuscular hemoglobin (MCH) and MCH surface density (MCHSD). In this paper, we investigate modifications of the 3D morphology and MCH in RBCs induced by the period of storage time for the purpose of classification of RBCs with different periods of storage by using off-axis digital holographic microscopy. The classification of RBCs based on the duration of storage is highly relevant because a long storage of blood before transfusion may alter the functionality of RBCs and, therefore, cause complications in patients. To analyze any changes in the 3D morphology and MCH of RBCs due to storage, we use data sets from RBC samples stored for 8, 13, 16, 23, 27, 30, 34, 37, 40, 47, and 57 days, respectively. The data sets consist of more than 3,300 blood cells in eleven classes, with more than 300 blood cells per class. The classes indicate the storage period of RBCs and are listed in chronological order. Using the RBCs donated by healthy persons, the off-axis digital holographic microscopy reconstructs several quantitative phase images of RBC samples stored for eleven different periods. We employ marker-controlled watershed transform to remove the background in the RBC quantitative phase images obtained by the off-axis digital holographic microscopy. More than 300 single RBCs are extracted from the segmented quantitative phase images for each class. Such a large number of RBC samples enable us to obtain statistical distributions of the characteristic properties of RBCs after a specific period of storage. Experimental results show that the 3D morphology of the RBCs, in contrast to MCH, is essentially related to the aging of the RBCs.


IEEE\/OSA Journal of Display Technology | 2012

Fast 3D Computational Integral Imaging Using Graphics Processing Unit

Faliu Yi; Inkyu Moon; Jeong-A Lee; Bahram Javidi

In computational integral imaging (II), the elemental images are processed on serial processors to reconstruct one plane (slice) of the 3D scene. In this paper, we present a fast three-dimensional (3D) integral imaging system via a graphics processing unit (GPU) which allows parallel processing with multiple processors. We show that it can significantly accelerate 3D scene reconstruction in II using the GPU based stream-processing model. The streaming version of the ray back propagation algorithm with lookup table is presented. It is demonstrated that the ray back propagation algorithm with a lookup table for the 3D scene reconstruction in II to be processed on parallel processors may greatly improve computational speed while requiring minimally larger memory space as compared with CPU sequential computing. Experimental results verify the feasibility for parallel implementation of 3D integral imaging. To the best of our knowledge, this is the first study on achieving a 3D computational integral imaging system using GPU computing with high parallelism.


Journal of Biomedical Optics | 2015

Three-dimensional counting of morphologically normal human red blood cells via digital holographic microscopy

Faliu Yi; Inkyu Moon; Yeon H. Lee

Abstract. Counting morphologically normal cells in human red blood cells (RBCs) is extremely beneficial in the health care field. We propose a three-dimensional (3-D) classification method of automatically determining the morphologically normal RBCs in the phase image of multiple human RBCs that are obtained by off-axis digital holographic microscopy (DHM). The RBC holograms are first recorded by DHM, and then the phase images of multiple RBCs are reconstructed by a computational numerical algorithm. To design the classifier, the three typical RBC shapes, which are stomatocyte, discocyte, and echinocyte, are used for training and testing. Nonmain or abnormal RBC shapes different from the three normal shapes are defined as the fourth category. Ten features, including projected surface area, average phase value, mean corpuscular hemoglobin, perimeter, mean corpuscular hemoglobin surface density, circularity, mean phase of center part, sphericity coefficient, elongation, and pallor, are extracted from each RBC after segmenting the reconstructed phase images by using a watershed transform algorithm. Moreover, four additional properties, such as projected surface area, perimeter, average phase value, and elongation, are measured from the inner part of each cell, which can give significant information beyond the previous 10 features for the separation of the RBC groups; these are verified in the experiment by the statistical method of Hotelling’s T-square test. We also apply the principal component analysis algorithm to reduce the dimension number of variables and establish the Gaussian mixture densities using the projected data with the first eight principal components. Consequently, the Gaussian mixtures are used to design the discriminant functions based on Bayesian decision theory. To improve the performance of the Bayes classifier and the accuracy of estimation of its error rate, the leaving-one-out technique is applied. Experimental results show that the proposed method can yield good results for calculating the percentage of each typical normal RBC shape in a reconstructed phase image of multiple RBCs that will be favorable to the analysis of RBC-related diseases. In addition, we show that the discrimination performance for the counting of normal shapes of RBCs can be improved by using 3-D features of an RBC.


Biomedical Optics Express | 2016

Cell morphology-based classification of red blood cells using holographic imaging informatics

Faliu Yi; Inkyu Moon; Bahram Javidi

We present methods that automatically select a linear or nonlinear classifier for red blood cell (RBC) classification by analyzing the equality of the covariance matrices in Gabor-filtered holographic images. First, the phase images of the RBCs are numerically reconstructed from their holograms, which are recorded using off-axis digital holographic microscopy (DHM). Second, each RBC is segmented using a marker-controlled watershed transform algorithm and the inner part of the RBC is identified and analyzed. Third, the Gabor wavelet transform is applied to the segmented cells to extract a series of features, which then undergo a multivariate statistical test to evaluate the equality of the covariance matrices of the different shapes of the RBCs using selected features. When these covariance matrices are not equal, a nonlinear classification scheme based on quadratic functions is applied; otherwise, a linear classification is applied. We used the stomatocyte, discocyte, and echinocyte RBC for classifier training and testing. Simulation results demonstrated that 10 of the 14 RBC features are useful in RBC classification. Experimental results also revealed that the covariance matrices of the three main RBC groups are not equal and that a nonlinear classification method has a much lower misclassification rate. The proposed automated RBC classification method has the potential for use in drug testing and the diagnosis of RBC-related diseases.


Optics Express | 2015

Automated multi-parameter measurement of cardiomyocytes dynamics with digital holographic microscopy

Benjamin Rappaz; Inkyu Moon; Faliu Yi; Bahram Javidi; Pierre Marquet; Gerardo Turcatti

Compounds tested during drug development may have adverse effects on the heart; therefore all new chemical entities have to undergo extensive preclinical assessment for cardiac liability. Conventional intensity-based imaging techniques are not robust enough to provide detailed information for cell structure and the captured images result in low-contrast, especially to cell with semi-transparent or transparent feature, which would affect the cell analysis. In this paper we show, for the first time, that digital holographic microscopy (DHM) integrated with information processing algorithms automatically provide dynamic quantitative phase profiles of beating cardiomyocytes. We experimentally demonstrate that relevant parameters of cardiomyocytes can be obtained by our automated algorithm based on DHM phase signal analysis and used to characterize the physiological state of resting cardiomyocytes. Our study opens the possibility of automated quantitative analysis of cardiomyocyte dynamics suitable for further drug safety testing and compounds selection as a new paradigm in drug toxicity screens.


Sensors | 2014

A Multispectral Photon-Counting Double Random Phase Encoding Scheme for Image Authentication

Faliu Yi; Inkyu Moon; Yeon H. Lee

In this paper, we propose a new method for color image-based authentication that combines multispectral photon-counting imaging (MPCI) and double random phase encoding (DRPE) schemes. The sparsely distributed information from MPCI and the stationary white noise signal from DRPE make intruder attacks difficult. In this authentication method, the original multispectral RGB color image is down-sampled into a Bayer image. The three types of color samples (red, green and blue color) in the Bayer image are encrypted with DRPE and the amplitude part of the resulting image is photon counted. The corresponding phase information that has nonzero amplitude after photon counting is then kept for decryption. Experimental results show that the retrieved images from the proposed method do not visually resemble their original counterparts. Nevertheless, the original color image can be efficiently verified with statistical nonlinear correlations. Our experimental results also show that different interpolation algorithms applied to Bayer images result in different verification effects for multispectral RGB color images.


Applied Optics | 2014

Simultaneous reconstruction of multiple depth images without off-focus points in integral imaging using a graphics processing unit

Faliu Yi; Ji-Eun Lee; Inkyu Moon

The reconstruction of multiple depth images with a ray back-propagation algorithm in three-dimensional (3D) computational integral imaging is computationally burdensome. Further, a reconstructed depth image consists of a focus and an off-focus area. Focus areas are 3D points on the surface of an object that are located at the reconstructed depth, while off-focus areas include 3D points in free-space that do not belong to any object surface in 3D space. Generally, without being removed, the presence of an off-focus area would adversely affect the high-level analysis of a 3D object, including its classification, recognition, and tracking. Here, we use a graphics processing unit (GPU) that supports parallel processing with multiple processors to simultaneously reconstruct multiple depth images using a lookup table containing the shifted values along the x and y directions for each elemental image in a given depth range. Moreover, each 3D point on a depth image can be measured by analyzing its statistical variance with its corresponding samples, which are captured by the two-dimensional (2D) elemental images. These statistical variances can be used to classify depth image pixels as either focus or off-focus points. At this stage, the measurement of focus and off-focus points in multiple depth images is also implemented in parallel on a GPU. Our proposed method is conducted based on the assumption that there is no occlusion of the 3D object during the capture stage of the integral imaging process. Experimental results have demonstrated that this method is capable of removing off-focus points in the reconstructed depth image. The results also showed that using a GPU to remove the off-focus points could greatly improve the overall computational speed compared with using a CPU.

Collaboration


Dive into the Faliu Yi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bahram Javidi

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Yeon H. Lee

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel Boss

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Benjamin Rappaz

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Bahram Javidi

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge