Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Inkyu Moon is active.

Publication


Featured researches published by Inkyu Moon.


Optics Express | 2005

Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography

Bahram Javidi; Inkyu Moon; Seokwon Yeom

We address three-dimensional (3D) visualization and recognition of microorganisms using single-exposure on-line (SEOL) digital holography. A coherent 3D microscope-based Mach-Zehnder interferometer records a single on-line Fresnel digital hologram of microorganisms. Three-dimensional microscopic images are reconstructed numerically at different depths by an inverse Fresnel transformation. For recognition, microbiological objects are segmented by processing the background diffraction field. Gabor-based wavelets extract feature vectors with multi-oriented and multi-scaled Gabor kernels. We apply a rigid graph matching (RGM) algorithm to localize predefined shape features of biological samples. Preliminary experimental and simulation results using sphacelaria alga and tribonema aequale alga microorganisms are presented. To the best of our knowledge, this is the first report on 3D visualization and recognition of microorganisms using on-line digital holography with single-exposure.


Proceedings of the IEEE | 2011

Three-Dimensional Optical Sensing and Visualization Using Integral Imaging

Myungjin Cho; Mohammad Mehdi DaneshPanah; Inkyu Moon; Bahram Javidi

Three-dimensional (3-D) optical image sensing and visualization technologies have been researched extensively for different applications in fields as diverse as entertainment, medical sciences, robotics, manufacturing, and defense. In many instances, the capabilities of 3-D imaging and display systems have revolutionized the progress of these disciplines, enabling new detection/display abilities that would not have been otherwise possible. As one of the promising methods in the area of 3-D sensing and display, integral imaging offers passive and relatively inexpensive way to capture 3-D information and to visualize it optically or computationally. The integral imaging technique belongs to the broader class of multiview imaging techniques and is based on a century old principle which has only been resurrected in the past decade owing to advancement of optoelectronic image sensors as well as the exponential increase in computing power. In this paper, historic and physical foundations of integral imaging are overviewed; different optical pickup and display schemes are discussed and system parameters and performance metrics are described. In addition, computational methods for reconstruction and range estimation are presented and several applications including 3-D underwater imaging, near infra red passive sensing, imaging in photon-starved environments, and 3-D optical microscopy are discussed among others.


Proceedings of the IEEE | 2009

Automated Three-Dimensional Identification and Tracking of Micro/Nanobiological Organisms by Computational Holographic Microscopy

Inkyu Moon; Mohammad Mehdi DaneshPanah; Bahram Javidi; Adrian Stern

The ability to sense, track, identify, and monitor biological micro/nanoorganisms in a real-time, automated, and integrated system is of great importance from both scientific and technological standpoints. Such a system and its possible variants would have numerous applications in a wide spectrum of fields, including defense against biological warfare, disease control, environmental health and safety, and medical treatments. In this paper, we review a comprehensive mixture of optical and computational tools developed in our group aiming at real-time sensing and recognition of biological microorganisms. Digital in-line holographic microscopy is used with both coherent and partially coherent illumination to probe the specimen interferometrically. The interference pattern is then recorded on an optoelectronic image sensor and transferred to a computer where special statistical algorithms are performed to segment, recognize, and track the microorganisms within the field of view of the microscope. The advantages of proposed holographic sensing are described compared to conventional two-dimensional imaging systems. In addition, the theoretical aspects and fundamental limitations of digital in-line holographic microscopy are discussed, which determine the relationship between system parameters and achievable performance. The proposed optical-digital integrated system for automated, real-time sensing and recognition of biological microorganisms has been deemed promising with the potential of widespread application. We demonstrate how the proposed techniques function together in a series of experiments.


Optics Express | 2006

Real-time automated 3D sensing, detection, and recognition of dynamic biological micro-organic events

Bahram Javidi; Seokwon Yeom; Inkyu Moon; Mehdi Daneshpanah

In this paper, we present an overview of three-dimensional (3D) optical imaging techniques for real-time automated sensing, visualization, and recognition of dynamic biological microorganisms. Real time sensing and 3D reconstruction of the dynamic biological microscopic objects can be performed by single-exposure on-line (SEOL) digital holographic microscopy. A coherent 3D microscope-based interferometer is constructed to record digital holograms of dynamic micro biological events. Complex amplitude 3D images of the biological microorganisms are computationally reconstructed at different depths by digital signal processing. Bayesian segmentation algorithms are applied to identify regions of interest for further processing. A number of pattern recognition approaches are addressed to identify and recognize the microorganisms. One uses 3D morphology of the microorganisms by analyzing 3D geometrical shapes which is composed of magnitude and phase. Segmentation, feature extraction, graph matching, feature selection, and training and decision rules are used to recognize the biological microorganisms. In a different approach, 3D technique is used that are tolerant to the varying shapes of the non-rigid biological microorganisms. After segmentation, a number of sampling patches are arbitrarily extracted from the complex amplitudes of the reconstructed 3D biological microorganism. These patches are processed using a number of cost functions and statistical inference theory for the equality of means and equality of variances between the sampling segments. Also, we discuss the possibility of employing computational integral imaging for 3D sensing, visualization, and recognition of biological microorganisms illuminated under incoherent light. Experimental results with several biological microorganisms are presented to illustrate detection, segmentation, and identification of micro biological events.


international conference on systems | 2012

Image segmentation: A survey of graph-cut methods

Faliu Yi; Inkyu Moon

As a preprocessing step, image segmentation, which can do partition of an image into different regions, plays an important role in computer vision, objects recognition, tracking and image analysis. Till today, there are a large number of methods present that can extract the required foreground from the background. However, most of these methods are solely based on boundary or regional information which has limited the segmentation result to a large extent. Since the graph cut based segmentation method was proposed, it has obtained a lot of attention because this method utilizes both boundary and regional information. Furthermore, graph cut based method is efficient and accepted world-wide since it can achieve globally optimal result for the energy function. It is not only promising to specific image with known information but also effective to the natural image without any pre-known information. For the segmentation of N-dimensional image, graph cut based methods are also applicable. Due to the advantages of graph cut, various methods have been proposed. In this paper, the main aim is to help researcher to easily understand the graph cut based segmentation approach. We also classify this method into three categories. They are speed up-based graph cut, interactive-based graph cut and shape prior-based graph cut. This paper will be helpful to those who want to apply graph cut method into their research.


Optics Express | 2012

Automated statistical quantification of three-dimensional morphology and mean corpuscular hemoglobin of multiple red blood cells

Inkyu Moon; Bahram Javidi; Faliu Yi; Daniel Boss; Pierre Marquet

In this paper, we present an automated approach to quantify information about three-dimensional (3D) morphology, hemoglobin content and density of mature red blood cells (RBCs) using off-axis digital holographic microscopy (DHM) and statistical algorithms. The digital hologram of RBCs is recorded by a CCD camera using an off-axis interferometry setup and quantitative phase images of RBCs are obtained by a numerical reconstruction algorithm. In order to remove unnecessary parts and obtain clear targets in the reconstructed phase image with many RBCs, the marker-controlled watershed segmentation algorithm is applied to the phase image. Each RBC in the segmented phase image is three-dimensionally investigated. Characteristic properties such as projected cell surface, average phase, sphericity coefficient, mean corpuscular hemoglobin (MCH) and MCH surface density of each RBC is quantitatively measured. We experimentally demonstrate that joint statistical distributions of the characteristic parameters of RBCs can be obtained by our algorithm and efficiently used as a feature pattern to discriminate between RBC populations that differ in shape and hemoglobin content. Our study opens the possibility of automated RBC quantitative analysis suitable for the rapid classification of a large number of RBCs from an individual blood specimen, which is a fundamental step to develop a diagnostic approach based on DHM.


Optics Express | 2006

Three-dimensional identification of biological microorganism using integral imaging

Bahram Javidi; Inkyu Moon; Seokwon Yeom

In this paper, we address the identification of biological microorganisms using microscopic integral imaging (II). II senses multi-view directional information of 3D objects illuminated by incoherent light. A micro-lenslet array generates a set of elemental images by projecting a 3D scene onto a detector array. In computational reconstruction of II, 3D volumetric scenes are numerically reconstructed by means of a geometrical ray projection method. The identification of the biological samples is performed using the 3D volume of the reconstructed object. In one approach, the multivariate statistical distribution of the reference sample is measured in 3D space and compared with an unknown input sample by means of statistical discriminant functions. The multivariate empirical cumulative density of the 3D volume image is determined for classification. On the other approach, the graph matching technique is applied to 3D volumetric images with Gabor feature extraction. The reference morphology is identified in unknown input samples using 3D grids. Experimental results are presented for the identification of sphacelaria alga and tribonema aequale alga. We present experimental results for both 3D and 2D imaging. To the best of our knowledge, this is the first report on 3D identification of microorganisms using II.


Optics & Photonics News | 2011

Cell Identification Computational 3-D Holographic Microscopy

Inkyu Moon; Mehdi Daneshpanah; Arun Anand; Bahram Javidi

Recent developments in 3-D computational optical imaging have ushered in a new era for biological research. Techniques in 3-D holographic microscopy integrated with numerical processing are enabling researchers to obtain rich, quantitative information about the structure of cells and microorganisms in noninvasive, real-time conditions.


Journal of Biomedical Optics | 2013

Automated segmentation of multiple red blood cells with digital holographic microscopy

Faliu Yi; Inkyu Moon; Bahram Javidi; Daniel Boss; Pierre Marquet

Abstract. We present a method to automatically segment red blood cells (RBCs) visualized by digital holographic microscopy (DHM), which is based on the marker-controlled watershed algorithm. Quantitative phase images of RBCs can be obtained by using off-axis DHM along to provide some important information about each RBC, including size, shape, volume, hemoglobin content, etc. The most important process of segmentation based on marker-controlled watershed is to perform an accurate localization of internal and external markers. Here, we first obtain the binary image via Otsu algorithm. Then, we apply morphological operations to the binary image to get the internal markers. We then apply the distance transform algorithm combined with the watershed algorithm to generate external markers based on internal markers. Finally, combining the internal and external markers, we modify the original gradient image and apply the watershed algorithm. By appropriately identifying the internal and external markers, the problems of oversegmentation and undersegmentation are avoided. Furthermore, the internal and external parts of the RBCs phase image can also be segmented by using the marker-controlled watershed combined with our method, which can identify the internal and external markers appropriately. Our experimental results show that the proposed method achieves good performance in terms of segmenting RBCs and could thus be helpful when combined with an automated classification of RBCs.


Optics Letters | 2009

Three-dimensional recognition of photon-starved events using computational integral imaging and statistical sampling

Inkyu Moon; Bahram Javidi

We present a statistical approach to recognize three-dimensional (3D) objects with a small number of photons captured by using integral imaging (II). For 3D recognition of the events, the photon-limited elemental image set of a 3D object is obtained using the II technique. A computational geometrical ray propagation algorithm and the parametric maximum likelihood estimator are applied to the photon-limited elemental image set to reconstruct the irradiance of the original 3D scene voxels. The sampling distributions for the statistical parameters of the reconstructed image are determined. Finally, hypothesis testing for the equality of the statistical parameters between reference and input data sets is performed for statistical classification of populations on the basis of sampling distribution information. It is shown that large data sets of photon-limited 3D images can be converted into sampling distributions with their own statistical parameters, resulting in a substantial data dimensionality reduction for processing.

Collaboration


Dive into the Inkyu Moon's collaboration.

Top Co-Authors

Avatar

Bahram Javidi

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Arun Anand

Maharaja Sayajirao University of Baroda

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bahram Javidi

University of Connecticut

View shared research outputs
Top Co-Authors

Avatar

Yeon H. Lee

Sungkyunkwan University

View shared research outputs
Top Co-Authors

Avatar

Adrian Stern

Ben-Gurion University of the Negev

View shared research outputs
Researchain Logo
Decentralizing Knowledge