Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Falko Lange is active.

Publication


Featured researches published by Falko Lange.


Progress in Biophysics & Molecular Biology | 2011

Systems biology of JAK-STAT signalling in human malignancies.

Julio Vera; Katja Rateitschak; Falko Lange; Christina Kossow; Olaf Wolkenhauer; Robert Jaster

Originally implicated in the regulation of survival, proliferation and differentiation of haematopoietic cells, the JAK-STAT pathway has also been linked to developmental processes, growth control and maintenance of homeostasis in a variety of other cells and tissues. Although it remains a complex system, its relative simplicity and the availability of molecular data makes it particularly attractive for modelling approaches. In this review, we will focus on JAK-STAT signalling in the context of cancer and present efforts to investigate signalling dynamics with the help of mathematical models. We describe the modelling workflow that realises a systems biology approach and give an example for interferon-γ signalling in pancreatic stellate cells.


Cellular Signalling | 2010

Mathematical modelling of interferon-γ signalling in pancreatic stellate cells reflects and predicts the dynamics of STAT1 pathway activity

Katja Rateitschak; Anna Karger; Brit Fitzner; Falko Lange; Olaf Wolkenhauer; Robert Jaster

Signal transducer and activator of transcription (STAT) 1 is essentially involved in the mediation of antifibrotic interferon-gamma (IFN gamma) effects in pancreatic stellate cells (PSC). Here, we have further analysed the activation of the STAT1 pathway in a PSC line by combining quantitative data generation with mathematical modelling. At saturating concentrations of IFN gamma, a triphasic pattern of STAT1 activation was observed. An initial, rapid induction of phospho-STAT1 was followed by a plateau phase and another, long-lasting phase of further increase. The late increase occurred despite enhanced expression of the feedback inhibitor (SOCS1), and corresponded to increased levels of total STAT1 protein. If IFN gamma was applied at non-saturating concentrations, phospho-STAT1 and SOCS1 levels peaked and declined again over a 12 hour period, while STAT1 protein levels remained high. The mathematical model, based on a system of ordinary differential equations, describes temporal changes of the network components as a function of interactions and transport processes. The model reproduced activation profiles of all components of the STAT1 pathway that were experimentally analysed. Furthermore, it successfully predicted the dynamics of network components in additional experimental studies. Based on experimental findings and the results obtained from modelling, we suggest exhaustion of applied IFN gamma and STAT1 dephosphorylation by tyrosine phosphatases as limiting factors of STAT1 activation in PSC. In contrast, we did not obtain compelling evidence that SOCS1 acts as an efficient feedback inhibitor in our experimental system. We believe that further investigations into mathematical modelling of the STAT1 pathway will improve the understanding of the antifibrotic interferon action.


Molecular Cancer | 2011

Studies on mechanisms of interferon-gamma action in pancreatic cancer using a data-driven and model-based approach

Falko Lange; Katja Rateitschak; Brit Fitzner; Ralf Pöhland; Olaf Wolkenhauer; Robert Jaster

BackgroundInterferon-gamma (IFNγ) is a multifunctional cytokine with antifibrotic and antiproliferative efficiency. We previously found that pancreatic stellate cells (PSC), the main effector cells in cancer-associated fibrosis, are targets of IFNγ action in the pancreas. Applying a combined experimental and computational approach, we have demonstrated a pivotal role of STAT1 in IFNγ signaling in PSC. Using in vivo and in vitro models of pancreatic cancer, we have now studied IFNγ effects on the tumor cells themselves. We hypothesize that IFNγ inhibits tumor progression through two mechanisms, reduction of fibrogenesis and antiproliferative effects on the tumor cells. To elucidate the molecular action of IFNγ, we have established a mathematical model of STAT1 activation and combined experimental studies with computer simulations.ResultsIn BALB/c-nu/nu mice, flank tumors composed of DSL-6A/C1 pancreatic cancer cells and PSC grew faster than pure DSL-6A/C1 cell tumors. IFNγ inhibited the growth of both types of tumors to a similar degree. Since the stroma reaction typically reduces the efficiency of therapeutic agents, these data suggested that IFNγ may retain its antitumor efficiency in PSC-containing tumors by targeting the stellate cells. Studies with cocultures of DSL-6A/C1 cells and PSC revealed a modest antiproliferative effect of IFNγ under serum-free conditions. Immunoblot analysis of STAT1 phosphorylation and confocal microscopy studies on the nuclear translocation of STAT1 in DSL-6A/C1 cells suggested that IFNγ-induced activation of the transcription factor was weaker than in PSC. The mathematical model not only reproduced the experimental data, but also underscored the conclusions drawn from the experiments by indicating that a maximum of 1/500 of total STAT1 is located as phosphorylated STAT1 in the nucleus upon IFNγ treatment of the tumor cells.ConclusionsIFNγ is equally effective in DSL-6A/C1 tumors with and without stellate cells. While its action in the presence of PSC may be explained by inhibition of fibrogenesis, its efficiency in PSC-free tumors is unlikely to be caused by direct effects on the tumor cells alone but may involve inhibitory effects on local stroma cells as well. To gain further insights, we also plan to apply computer simulations to the analysis of tumor growth in vivo.


Histochemistry and Cell Biology | 2009

Galectin-1 induced activation of the mitochondrial apoptotic pathway: evidence for a connection between death-receptor and mitochondrial pathways in human Jurkat T lymphocytes

Falko Lange; Bettina Brandt; Markus Tiedge; Ludwig Jonas; Udo Jeschke; Ralf Pöhland; Hermann Walzel

Galectin-1 (gal-1) triggers T cell death by several distinct intracellular pathways including the activation of the death-receptor pathway. The aim of this study was to investigate whether gal-1 induced activation of the death-receptor pathway in Jurkat T lymphocytes mediates apoptosis via the mitochondrial pathway linked by truncated Bid (tBid). We demonstrate that gal-1 induced proteolytic cleavage of the death agonist Bid, a member of the Bcl-2/Bcl-xL family and a substrate of activated caspase-8, was inhibited by caspase-8 inhibitor II (Z-IETD-FMK). Downstream of Bid, gal-1 stimulated mitochondrial cytochrome c release as well as the activation and proteolytic processing of initiator procaspase-9 were effectively decreased by caspase-8 inhibitor II. Blocking of gal-1 induced cleavage of effector procaspase-3 by caspase-8 inhibitor II as well as by caspase-9 inhibitors I (Z-LEHD-FMK) and III (Ac-LEHD-CMK) indicates that receptor and mitochondrial pathways converged in procaspase-3 activation and contribute to proteolytic processing of effector procaspase-6 and -7. Western blot analyses and immunofluorescence staining revealed that exposure of Jurkat T cells to gal-1 resulted in the cleavage of the DNA-repair enzyme poly (ADP-ribose) polymerase, cytoskeletal α-fodrin, and nuclear lamin A as substrates of activated caspases. Our data demonstrate that Bid provides a connection between the death receptor and the mitochondrial pathway of gal-1 induced apoptosis in human Jurkat T lymphocytes.


PLOS Computational Biology | 2012

Parameter Identifiability and Sensitivity Analysis Predict Targets for Enhancement of STAT1 Activity in Pancreatic Cancer and Stellate Cells

Katja Rateitschak; Felix Winter; Falko Lange; Robert Jaster; Olaf Wolkenhauer

The present work exemplifies how parameter identifiability analysis can be used to gain insights into differences in experimental systems and how uncertainty in parameter estimates can be handled. The case study, presented here, investigates interferon-gamma (IFNγ) induced STAT1 signalling in two cell types that play a key role in pancreatic cancer development: pancreatic stellate and cancer cells. IFNγ inhibits the growth for both types of cells and may be prototypic of agents that simultaneously hit cancer and stroma cells. We combined time-course experiments with mathematical modelling to focus on the common situation in which variations between profiles of experimental time series, from different cell types, are observed. To understand how biochemical reactions are causing the observed variations, we performed a parameter identifiability analysis. We successfully identified reactions that differ in pancreatic stellate cells and cancer cells, by comparing confidence intervals of parameter value estimates and the variability of model trajectories. Our analysis shows that useful information can also be obtained from nonidentifiable parameters. For the prediction of potential therapeutic targets we studied the consequences of uncertainty in the values of identifiable and nonidentifiable parameters. Interestingly, the sensitivity of model variables is robust against parameter variations and against differences between IFNγ induced STAT1 signalling in pancreatic stellate and cancer cells. This provides the basis for a prediction of therapeutic targets that are valid for both cell types.


PLOS ONE | 2014

Age-Dependent Effects of UCP2 Deficiency on Experimental Acute Pancreatitis in Mice

Sarah Müller; Hannah Kaiser; Burkhard Krüger; Brit Fitzner; Falko Lange; Cristin N. Bock; Horst Nizze; Saleh M. Ibrahim; Georg Fuellen; Olaf Wolkenhauer; Robert Jaster

Reactive oxygen species (ROS) have been implicated in the pathogenesis of acute pancreatitis (AP) for many years but experimental evidence is still limited. Uncoupling protein 2 (UCP2)-deficient mice are an accepted model of age-related oxidative stress. Here, we have analysed how UCP2 deficiency affects the severity of experimental AP in young and older mice (3 and 12 months old, respectively) triggered by up to 7 injections of the secretagogue cerulein (50 μg/kg body weight) at hourly intervals. Disease severity was assessed at time points from 3 hours to 7 days based on pancreatic histopathology, serum levels of alpha-amylase, intrapancreatic trypsin activation and levels of myeloperoxidase (MPO) in lung and pancreatic tissue. Furthermore, in vitro studies with pancreatic acini were performed. At an age of 3 months, UCP2-/- mice and wild-type (WT) C57BL/6 mice were virtually indistinguishable with respect to disease severity. In contrast, 12 months old UCP2-/- mice developed a more severe pancreatic damage than WT mice at late time points after the induction of AP (24 h and 7 days, respectively), suggesting retarded regeneration. Furthermore, a higher peak level of alpha-amylase activity and gradually increased MPO levels in pancreatic and lung tissue were observed in UCP2-/- mice. Interestingly, intrapancreatic trypsin activities (in vivo studies) and intraacinar trypsin and elastase activation in response to cerulein treatment (in vitro studies) were not enhanced but even diminished in the knockout strain. Finally, UCP2-/- mice displayed a diminished ratio of reduced and oxidized glutathione in serum but no increased ROS levels in pancreatic acini. Together, our data indicate an aggravating effect of UCP2 deficiency on the severity of experimental AP in older but not in young mice. We suggest that increased severity of AP in 12 months old UCP2-/- is caused by an imbalanced inflammatory response but is unrelated to acinar cell functions.


Mitochondrion | 2016

Uncoupling protein 2 protects mice from aging.

Misa Hirose; Paul Schilf; Falko Lange; Johannes Mayer; Gesine Reichart; Pallab Maity; Olaf Jöhren; Markus Schwaninger; Karin Scharffetter-Kochanek; Christian Sina; Christian D. Sadik; Rüdiger Köhling; Bruno Miroux; Saleh M. Ibrahim

Uncoupling protein (UCP) 2 is a mitochondrial transporter protein that plays various roles in cellular metabolism, including the glucose and lipid metabolism. Polymorphisms in UCP2 are associated with longevity in humans. In line with this, mice carrying the UCP2 transgene under the control of hypocretin promoter were reported to have an extended lifespan, while, conversely, mice deficient in Ucp2 demonstrated a significantly shorter lifespan. In this study, we examined the phenotype of aging in a large colony of Ucp2-deficient (Ucp2(-/-)) mice on the molecular level. We have found that the significantly shorter lives of Ucp2(-/-) mice is the result of an accelerated aging process throughout their entire lifespan. Thus, Ucp2(-/-) mice not only earlier gained sexual maturity, but also earlier progressed into an aging phenotype, reflected by a decrease in body weight, increased neutrophil numbers, and earlier emergence of spontaneous ulcerative dermatitis. Intriguingly, on the molecular level this acceleration in aging predominantly driven by increased levels of circulating IGF-1 in Ucp2(-/-) mice, hinting at a crosstalk between UCP2 and the classical Insulin/IGF-1 signaling aging pathway.


BioMed Research International | 2014

Biological and molecular effects of small molecule kinase inhibitors on low-passage human colorectal cancer cell lines.

Falko Lange; Benjamin Franz; Claudia Maletzki; Maja Hühns; Robert Jaster

Low-passage cancer cell lines are versatile tools to study tumor cell biology. Here, we have employed four such cell lines, established from primary tumors of colorectal cancer (CRC) patients, to evaluate effects of the small molecule kinase inhibitors (SMI) vemurafenib, trametinib, perifosine, and regorafenib in an in vitro setting. The mutant BRAF (V600E/V600K) inhibitor vemurafenib, but also the MEK1/2 inhibitor trametinib efficiently inhibited DNA synthesis, signaling through ERK1/2 and expression of genes downstream of ERK1/2 in BRAF mutant cells only. In case of the AKT inhibitor perifosine, three cell lines showed a high or intermediate responsiveness to the drug while one cell line was resistant. The multikinase inhibitor regorafenib inhibited proliferation of all CRC lines with similar efficiency and independent of the presence or absence of KRAS, BRAF, PIK3CA, and TP53 mutations. Regorafenib action was associated with broad-range inhibitory effects at the level of gene expression but not with a general inhibition of AKT or MEK/ERK signaling. In vemurafenib-sensitive cells, the antiproliferative effect of vemurafenib was enhanced by the other SMI. Together, our results provide insights into the determinants of SMI efficiencies in CRC cells and encourage the further use of low-passage CRC cell lines as preclinical models.


PLOS ONE | 2015

Reduced adolescent-age spatial learning ability associated with elevated juvenile-age superoxide levels in complex I mouse mutants.

Johannes Mayer; Gesine Reichart; Tursonjan Tokay; Falko Lange; Simone Baltrusch; Christian Junghanss; Olaf Wolkenhauer; Robert Jaster; Manfred Kunz; Markus Tiedge; Saleh M. Ibrahim; Georg Fuellen; Rüdiger Köhling

Large-scale, heteroplasmic and generally pathogenic mtDNA defects (as induced by defective mitochondrial DNA polymerase, clonal mutations or DNA deletions) are known to negatively impact on life span and can result in apoptosis and tissue loss in, e.g., skeletal muscle or reduce learning abilities. The functional impact of homoplasmic specific mtDNA point mutations, e.g., in genes coding for the electron transport chain, however, remains a matter of debate. The present study contributes to this discussion and provides evidence that a single point mutation in complex I of the respiratory chain is associated with impairment of spatial navigation in adolescent (6-month-old) mice, i.e., reduced performance in the Morris Water Maze, which goes along with increased production of reactive oxygen species (ROS) in juvenile mice (3 months) but not at the age of phenotype expression. A point mutation in complex III goes along with only a mild and non-significant negative effect on cognitive performance and no significant changes in ROS production. These findings suggest to also consider the ontogenetic development of phenotypes when studying mtDNA mutations and highlights a possible impact of complex I dysfunction on the emergence of neurological deficits.


Oncotarget | 2017

Application of in vivo imaging techniques to monitor therapeutic efficiency of PLX4720 in an experimental model of microsatellite instable colorectal cancer

Sarah Rohde; Tobias Lindner; Stefan Polei; Jan Stenzel; Luise Borufka; Sophie Achilles; Eric Hartmann; Falko Lange; Claudia Maletzki; Änne Glass; Sarah M. Schwarzenböck; Jens Kurth; Alexander Hohn; Brigitte Vollmar; Bernd J. Krause; Robert Jaster

Objectives Patient-derived tumor cell lines are a powerful tool to analyze the sensitivity of individual tumors to specific therapies in mice. An essential prerequisite for such an approach are reliable quantitative techniques to monitor tumor progression in vivo. Methods We have employed HROC24 cells, grown heterotopically in NMRI Foxn1nu mice, as a model of microsatellite instable colorectal cancer to investigate the therapeutic efficiencies of 5’-fluorouracil (5’-FU) and the mutant BRAF inhibitor PLX4720, a vemurafenib analogue, by three independent methods: external measurement by caliper, magnetic resonance imaging (MRI) and positron emission tomography/computed tomography (PET/CT) with 2-deoxy-2-(18F)fluoro-D-glucose (18F-FDG). Results Repeated measure ANOVA by a general linear model revealed that time-dependent changes of anatomic tumor volumes measured by MRI differed significantly from those of anatomic volumes assessed by caliper and metabolic volumes determined by PET/CT. Over the investigation period of three weeks, neither 5’-FU, PLX4720 nor a combination of both drugs affected the tumor volumes. Also, there was no drug effect on the apparent diffusion constant (ADC) value as detected by MRI. Interestingly, however, PET/CT imaging showed that PLX4720-containing therapies transiently reduced the standardized uptake value (SUV), indicating a temporary response to treatment. Conclusions 5’-FU and PLX4720 were largely ineffective with respect to HROC24 tumor growth. Tumoral uptake of 18F-FDG, as expressed by the SUV, proved as a sensitive indicator of small therapeutic effects. Metabolic imaging by 18F-FDG PET/CT is a suitable approach to detect effects of tumor-directed therapies early and even in the absence of morphological changes.

Collaboration


Dive into the Falko Lange's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge