Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fan Hsu is active.

Publication


Featured researches published by Fan Hsu.


Nucleic Acids Research | 2006

The UCSC genome browser database: update 2007

Robert M. Kuhn; Donna Karolchik; Ann S. Zweig; Heather Trumbower; Daryl J. Thomas; Archana Thakkapallayil; Charles W. Sugnet; Mario Stanke; Kayla E. Smith; Adam Siepel; Kate R. Rosenbloom; Brooke Rhead; Brian J. Raney; Andrew A. Pohl; Jakob Skou Pedersen; Fan Hsu; Angie S. Hinrichs; Rachel A. Harte; Mark Diekhans; Hiram Clawson; Gill Bejerano; Galt P. Barber; Robert Baertsch; David Haussler; William Kent

The UCSC Genome Browser Database (GBD, http://genome.ucsc.edu) is a publicly available collection of genome assembly sequence data and integrated annotations for a large number of organisms, including extensive comparative-genomic resources. In the past year, 13 new genome assemblies have been added, including two important primate species, orangutan and marmoset, bringing the total to 46 assemblies for 24 different vertebrates and 39 assemblies for 22 different invertebrate animals. The GBD datasets may be viewed graphically with the UCSC Genome Browser, which uses a coordinate-based display system allowing users to juxtapose a wide variety of data. These data include all mRNAs from GenBank mapped to all organisms, RefSeq alignments, gene predictions, regulatory elements, gene expression data, repeats, SNPs and other variation data, as well as pairwise and multiple-genome alignments. A variety of other bioinformatics tools are also provided, including BLAT, the Table Browser, the Gene Sorter, the Proteome Browser, VisiGene and Genome Graphs.


Nucleic Acids Research | 2012

The UCSC Genome Browser database: extensions and updates 2011

Timothy R. Dreszer; Donna Karolchik; Ann S. Zweig; Angie S. Hinrichs; Brian J. Raney; Robert M. Kuhn; Laurence R. Meyer; Matthew C. Wong; Cricket A. Sloan; Kate R. Rosenbloom; Greg Roe; Brooke Rhead; Andy Pohl; Venkat S. Malladi; Chin H. Li; Katrina Learned; Vanessa M. Kirkup; Fan Hsu; Rachel A. Harte; Luvina Guruvadoo; Mary Goldman; Belinda Giardine; Pauline A. Fujita; Mark Diekhans; Melissa S. Cline; Hiram Clawson; Galt P. Barber; David Haussler; W. James Kent

The University of California Santa Cruz Genome Browser (http://genome.ucsc.edu) offers online public access to a growing database of genomic sequence and annotations for a wide variety of organisms. The Browser is an integrated tool set for visualizing, comparing, analyzing and sharing both publicly available and user-generated genomic data sets. In the past year, the local database has been updated with four new species assemblies, and we anticipate another four will be released by the end of 2011. Further, a large number of annotation tracks have been either added, updated by contributors, or remapped to the latest human reference genome. Among these are new phenotype and disease annotations, UCSC genes, and a major dbSNP update, which required new visualization methods. Growing beyond the local database, this year we have introduced ‘track data hubs’, which allow the Genome Browser to provide access to remotely located sets of annotations. This feature is designed to significantly extend the number and variety of annotation tracks that are publicly available for visualization and analysis from within our site. We have also introduced several usability features including track search and a context-sensitive menu of options available with a right-click anywhere on the Browsers image.


Nucleic Acids Research | 2007

The UCSC Genome Browser Database: 2008 update

Donna Karolchik; Robert M. Kuhn; Robert Baertsch; Galt P. Barber; Hiram Clawson; Mark Diekhans; Belinda Giardine; Rachel A. Harte; Angie S. Hinrichs; Fan Hsu; K. M. Kober; Webb Miller; Jakob Skou Pedersen; Andy Pohl; Brian J. Raney; Brooke Rhead; Kate R. Rosenbloom; Kayla E. Smith; Mario Stanke; Archana Thakkapallayil; Heather Trumbower; Ting Wang; Ann S. Zweig; David Haussler; William Kent

The University of California, Santa Cruz, Genome Browser Database (GBD) provides integrated sequence and annotation data for a large collection of vertebrate and model organism genomes. Seventeen new assemblies have been added to the database in the past year, for a total coverage of 19 vertebrate and 21 invertebrate species as of September 2007. For each assembly, the GBD contains a collection of annotation data aligned to the genomic sequence. Highlights of this year’s additions include a 28-species human-based vertebrate conservation annotation, an enhanced UCSC Genes set, and more human variation, MGC, and ENCODE data. The database is optimized for fast interactive performance with a set of web-based tools that may be used to view, manipulate, filter and download the annotation data. New toolset features include the Genome Graphs tool for displaying genome-wide data sets, session saving and sharing, better custom track management, expanded Genome Browser configuration options and a Genome Browser wiki site. The downloadable GBD data, the companion Genome Browser toolset and links to documentation and related information can be found at: http://genome.ucsc.edu/. INTRODUCTION Fundamental to expanding our knowledge of how the human body works in health and in disease is the capability to access and share data produced through experimentation and computational analysis. The University of California, Santa Cruz (UCSC) Genome Browser Database (GBD) (http://genome.ucsc.edu) (1) provides a common repository for genomic annotation data—including comparative genomics, genes and gene predictions; mRNA and EST alignments; and expression, regulation, variation and assembly data—and robust, flexible tools for viewing, comparing, distributing and analyzing the information. Produced and maintained by the Genome Bioinformatics Group at the UCSC Center for Biomolecular Science and Engineering, the GBD focuses primarily on vertebrate and model organism genomes, with an emphasis on comparative genomics analysis. As of September 2007 the GBD contains data for 11 mammalian species including human, mouse, rat, chimpanzee, rhesus macaque, horse, cow, cat, dog, opossum and platypus; 8 other vertebrates: chicken, lizard (Anolis carolinensis), frog (Xenopus tropicalis), zebrafish, fugu, tetraodon, medaka and stickleback; and 21 invertebrates including 11 flies, honeybee, Anopheles mosquito, five worms, one yeast (Saccharomyces cerevisiae) and two deuterostomes—purple sea urchin and sea squirt. For many of the organisms, more than one assembly is provided, and several older archived assemblies may be *To whom correspondence should be addressed. Tel: +1 831 459 1544; Fax: +1 831 459 1809; Email: [email protected] University of California, Santa Cruz, Genome Browser Database (GBD) provides integrated sequence and annotation data for a large collection of vertebrate and model organism genomes. Seventeen new assemblies have been added to the database in the past year, for a total coverage of 19 vertebrate and 21 invertebrate species as of September 2007. For each assembly, the GBD contains a collection of annotation data aligned to the genomic sequence. Highlights of this years additions include a 28-species human-based vertebrate conservation annotation, an enhanced UCSC Genes set, and more human variation, MGC, and ENCODE data. The database is optimized for fast interactive performance with a set of web-based tools that may be used to view, manipulate, filter and download the annotation data. New toolset features include the Genome Graphs tool for displaying genome-wide data sets, session saving and sharing, better custom track management, expanded Genome Browser configuration options and a Genome Browser wiki site. The downloadable GBD data, the companion Genome Browser toolset and links to documentation and related information can be found at: http://genome.ucsc.edu/.


Bioinformatics | 2006

The UCSC Known Genes

Fan Hsu; W. James Kent; Hiram Clawson; Robert M. Kuhn; Mark Diekhans; David Haussler

The University of California Santa Cruz (UCSC) Known Genes dataset is constructed by a fully automated process, based on protein data from Swiss-Prot/TrEMBL (UniProt) and the associated mRNA data from Genbank. The detailed steps of this process are described. Extensive cross-references from this dataset to other genomic and proteomic data were constructed. For each known gene, a details page is provided containing rich information about the gene, together with extensive links to other relevant genomic, proteomic and pathway data. As of July 2005, the UCSC Known Genes are available for human, mouse and rat genomes. The Known Genes serves as a foundation to support several key programs: the Genome Browser, Proteome Browser, Gene Sorter and Table Browser offered at the UCSC website. All the associated data files and program source code are also available. They can be accessed at http://genome.ucsc.edu. The genomic coverage of UCSC Known Genes, RefSeq, Ensembl Genes, H-Invitational and CCDS is analyzed. Although UCSC Known Genes offers the highest genomic and CDS coverage among major human and mouse gene sets, more detailed analysis suggests all of them could be further improved.


Nucleic Acids Research | 2004

The UCSC Proteome Browser

Fan Hsu; Tom H. Pringle; Robert M. Kuhn; Donna Karolchik; Mark Diekhans; David Haussler; W. James Kent

The University of California Santa Cruz (UCSC) Proteome Browser provides a wealth of protein information presented in graphical images and with links to other protein-related Internet sites. The Proteome Browser is tightly integrated with the UCSC Genome Browser. For the first time, Genome Browser users have both the genome and proteome worlds at their fingertips simultaneously. The Proteome Browser displays tracks of protein and genomic sequences, exon structure, polarity, hydrophobicity, locations of cysteine and glycosylation potential, Superfamily domains and amino acids that deviate from normal abundance. Histograms show genome-wide distribution of protein properties, including isoelectric point, molecular weight, number of exons, InterPro domains and cysteine locations, together with specific property values of the selected protein. The Proteome Browser also provides links to gene annotations in the Genome Browser, the Known Genes details page and the Gene Sorter; domain information from Superfamily, InterPro and Pfam; three-dimensional structures at the Protein Data Bank and ModBase; and pathway data at KEGG, BioCarta/CGAP and BioCyc. As of August 2004, the Proteome Browser is available for human, mouse and rat proteomes. The browser may be accessed from any Known Genes details page of the Genome Browser at http://genome.ucsc.edu. A users guide is also available on this website.


Cancer Research | 2009

UCSC cancer genomics browser.

Jingchun Zhu; John Zachary Sanborn; Ting Wang; Fan Hsu; Stephen Charles Benz; Christopher W. Szeto; Laura Esserman; David Haussler

Abstract #2022 As experimental techniques for a comprehensive survey of the cancer landscape mature, there is a great demand in the cancer research field to develop advanced analysis and visualization tools for the characterization and integrative analysis of the large, complex genomic datasets arising from different technology platforms.
 The UCSC Cancer Genomics Browser is a suite of web-based tools designed to integrate, visualize and analyze genomic and clinical data. The secured-access browser, available at https://cancer.cse.ucsc.edu/, consists of three major components: hgHeatmap, hgFeatureSorter, and hgPathSorter. The main panel, hgHeatmap, displays a whole-genome-oriented view of genome-wide experimental measurements for individual and sets of samples/patients alongside their clinical information. hgFeatureSorter and hgPathSorter together enable investigators to order, filter, aggregate and display data interactively based on any given feature set ranging from clinical features to annotated biological pathways to user-edited collections of genes. Standard and advanced statistical tools are available to provide quantitative analysis of whole genomic data or any of its subsets. The UCSC Cancer Genomics Browser is an extension of the UCSC Genome Browser; thus it inherits and integrates the Genome Browser9s existing rich set of human biology and genetics data to enhance the interpretability of cancer genomics data.
 We demonstrate the UCSC Cancer Genomics Browser by integrating several independent studies on breast cancer including the I-SPY chemotherapy clinical trial and other studies focused on chemotherapeutic response or long-term survival. The types of data that are visualized and analyzed by the browser include microarray measurements of gene expression, copy number variation and phosphoprotein expression, MRI imaging measurements, and clinical parameters.
 Collectively, these tools facilitate a synergistic interaction among clinicians, experimental biologists, and bioinformaticians. They enable cancer researchers to better explore the breadth and depth of the cancer genomics data resources, and to further characterize molecular pathways that influence cellular dynamics and stability in cancer. Ultimately, insights gained by applying these tools may advance our knowledge of human cancer biology and stimulate the discovery of new prognostic and diagnostic markers, as well as the development of therapeutic and prevention strategies.
 Funding sources: CALGB CA31964 and CA33601, ACRIN U01 CA079778 and CA080098, NCI SPORE CA58207, California Institute for Quantitative Biosciences, NHGRI. Citation Information: Cancer Res 2009;69(2 Suppl):Abstract nr 2022.


Nature Methods | 2009

The UCSC Cancer Genomics Browser

Jingchun Zhu; J. Zachary Sanborn; Stephen Charles Benz; Christopher Szeto; Fan Hsu; Robert M. Kuhn; Donna Karolchik; John G. Archie; Marc E. Lenburg; Laura Esserman; W. James Kent; David Haussler; Ting Wang


Human Mutation | 2007

PhenCode: connecting ENCODE data with mutations and phenotype

Belinda Giardine; Cathy Riemer; Tim Hefferon; Daryl J. Thomas; Fan Hsu; Julian Zielenski; Yunhua Sang; Laura Elnitski; Garry R. Cutting; Heather Trumbower; Andrew D. Kern; Robert M. Kuhn; George P. Patrinos; Jim R. Hughes; Doug Higgs; David H.K. Chui; Charles R. Scriver; Manyphong Phommarinh; Santosh Kumar Patnaik; Olga O. Blumenfeld; Bruce Gottlieb; Mauno Vihinen; Jouni Väliaho; Jim Kent; Webb Miller; Ross C. Hardison


Genome Research | 2005

Exploring relationships and mining data with the UCSC Gene Sorter

William Kent; Fan Hsu; Donna Karolchik; Robert M. Kuhn; Hiram Clawson; Heather Trumbower; David Haussler

Collaboration


Dive into the Fan Hsu's collaboration.

Top Co-Authors

Avatar

David Haussler

University of California

View shared research outputs
Top Co-Authors

Avatar

Robert M. Kuhn

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiram Clawson

University of California

View shared research outputs
Top Co-Authors

Avatar

Mark Diekhans

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

W. James Kent

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ann S. Zweig

University of California

View shared research outputs
Top Co-Authors

Avatar

Belinda Giardine

Pennsylvania State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge