Fang-Gen Lu
Central South University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fang-Gen Lu.
BMC Complementary and Alternative Medicine | 2011
Ning Xie; Yi Cui; Ya-Ni Yin; Xin Zhao; Junwen Yang; Zheng-Gen Wang; Nian Fu; Yong Tang; Xue-Hong Wang; Xiao-Wei Liu; Chun-Lian Wang; Fang-Gen Lu
BackgroundThe hypocholesterolemic effects of lactic acid bacteria (LAB) have now become an area of great interest and controversy for many scientists. In this study, we evaluated the effects of Lactobacillus plantarum 9-41-A and Lactobacillus fermentum M1-16 on body weight, lipid metabolism and intestinal microflora of rats fed a high-cholesterol diet.MethodsForty rats were assigned to four groups and fed either a normal or a high-cholesterol diet. The LAB-treated groups received the high-cholesterol diet supplemented with Lactobacillus plantarum 9-41-A or Lactobacillus fermentum M1-16. The rats were sacrificed after a 6-week feeding period. Body weights, visceral organ and fat pad weights, serum and liver cholesterol and lipid levels, and fecal cholesterol and bile acid concentrations were measured. Liver lipid deposition and adipocyte size were evaluated histologically.ResultsCompared with rats fed a high-cholesterol diet but without LAB supplementation, serum total cholesterol, low-density lipoprotein cholesterol and triglycerides levels were significantly decreased in LAB-treated rats (p < 0.05), with no significant change in high-density lipoprotein cholesterol levels. Hepatic cholesterol and triglyceride levels and liver lipid deposition were significantly decreased in the LAB-treated groups (p < 0.05). Accordingly, both fecal cholesterol and bile acids levels were significantly increased after LAB administration (p < 0.05). Intestinal Lactobacillus and Bifidobacterium colonies were increased while Escherichia coli colonies were decreased in the LAB-treated groups. Fecal water content was higher in the LAB-treated groups. Compared with rats fed a high-cholesterol diet, administration of Lactobacillus plantarum 9-41-A resulted in decreases in the body weight gain, liver and fat pad weight, and adipocytes size (p < 0.05).ConclusionsThis study suggests that LAB supplementation has hypocholesterolemic effects in rats fed a high-cholesterol diet. The ability to lower serum cholesterol varies among LAB strains. Our strains might be able to improve the intestinal microbial balance and potentially improve intestinal transit time. Although the mechanism is largely unknown, L. plantarum 9-41-A may play a role in fat metabolism.
World Journal of Gastroenterology | 2014
Shuijiao Chen; Xiao-Wei Liu; Jian-Ping Liu; Xi-Yan Yang; Fang-Gen Lu
To reduce medication for patients with ulcerative colitis (UC), we need to establish the etiology of UC. The intestinal microbiota of patients with inflammatory bowel disease (IBD) has been shown to differ from that of healthy controls and abundant data indicate that it changes in both composition and localization. Small intestinal bacterial overgrowth is significantly higher in IBD patients compared with controls. Probiotics have been investigated for their capacity to reduce the severity of UC. The luminal surfaces of the gastrointestinal tract are covered by a mucus layer. This normally acts as a barrier that does not allow bacteria to reach the epithelial cells and thus limits the direct contact between the host and the bacteria. The mucus layer in the colon comprises an inner layer that is firmly adherent to the intestinal mucosa, and an outer layer that can be washed off with minimal rinsing. Some bacteria can dissolve the protective inner mucus layer. Defects in renewal and formation of the inner mucus layer allow bacteria to reach the epithelium and have implications for the causes of colitis. In this review, important elements of UC pathology are thought to be the intestinal bacteria, gut mucus, and the mucosa-associated immune system.
Clinical & Developmental Immunology | 2015
Linlin Chen; Yi-You Zou; Jie Peng; Fang-Gen Lu; Ya-Ni Yin; Fujun Li; Junwen Yang
The aim of this paper is to determine the modulatory effects of Lactobacillus acidophilus on the IL-23/Th17 immune axis in experimental colitis. DSS-induced mouse models of UC were to be saline, hormones, and different concentrations of Lactobacillus acidophilus intervention. The expression of interleukin- (IL-) 17, tumor necrosis factor α (TNFα), IL-23, transforming growth factor β1 (TGFβ1), signal transducer and activator of transcription 3 (STAT3), and phosphorylated (p)-STAT3 was examined by RT-PCR, Western blotting, and immunohistochemical analysis. And the results showed that administration of L. acidophilus suppressed Th17 cell-mediated secretion of proinflammatory cytokine IL-17 through downregulation of IL-23 and TGFβ1 expression and downstream phosphorylation of p-STAT3.
World Journal of Gastroenterology | 2012
Fu-Xi Zhou; Lu Chen; Xiao-Wei Liu; Chunhui Ouyang; Xiao-Ping Wu; Xue-Hong Wang; Chun-Lian Wang; Fang-Gen Lu
AIM To investigate the role of Lactobacillus crispatus (L. crispatus) strain China Center for Type Culture Collection (CCTCC) M206119 in intestinal inflammation. METHODS Forty 8-wk-old Balb/c mice (20 ± 2 g) were divided into four groups of 10 mice each. Three groups that had received dextran sulfate sodium (DSS) were administered normal saline, sulfasalazine or CCTCC M206119 strain, and the fourth group received none of these. We assessed the severity of colitis using a disease activity index, measured the colon length and weight, collected stools and mesenteric lymph nodes for bacterial microflora analysis. One centimeter of the proximal colon, middle colon and distal colon were collected and fixed in 10% buffered formalin, dehydrated in ethanol, and embedded in paraffin. Interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α expression was detected using reverse transcription polymerase chain reaction. Protective factors zonula occludens (ZO)-1 and β-defensin 2 were detected by immunoblotting. The features of CCTCC M206119 strain were identified based on morphology, biochemical profile, and 16S RNA sequencing. RESULTS DSS-colitis animals treated with CCTCC M206119 had markedly more severe disease, with greater weight loss, diarrhea, fecal bleeding, and shortened colon length. In addition, the CCTCC-M206119-treated group had comparatively higher histological scores and more neutrophil infiltration than the controls. Expression of protective factors ZO-1 and β-defensin 2 was downregulated due to destruction of the mucosal barrier after CCTCC M206119 strain treatment. An in vitro assay demonstrated that CCTCC M206119 strain increased the nuclear translocation of nuclear factor-κB in epithelial cells. Intestinal proinflammatory or anti-inflammatory cytokine responses were evaluated. Proinflammatory colonic cytokine (IL-1β, IL-6 and TNF-α) levels were clearly increased in CCTCC-M206119-treated animals, whereas anti-inflammatory colonic cytokine (IL-10) level was lowered compared with saline or 5-aminosalicylic-acid-treated DSS-colitis mice. Next, CCTCC M206119 strain was characterized as L. crispatus by microscopic morphology, biochemical tests and 16S rRNA gene level. CONCLUSION Not all lactobacilli are beneficial for intestinal inflammation, and L. crispatus CCTCC M206119 strain is involved in exacerbation of intestinal inflammation in DSS-colitis mice.
World Journal of Gastroenterology | 2016
Jian-Ping Liu; Wen-Li Zou; Shuijiao Chen; Hongyun Wei; Ya-Ni Yin; Yi-You Zou; Fang-Gen Lu
AIM To study the effects of different diets on intestinal microbiota and nonalcoholic fatty liver disease (NAFLD) development at the same caloric intake. METHODS Thirty male Sprague-Dawley rats were randomized into five groups (six rats each). The control diet (CON) group and free high-fat diet (FFAT) group were allowed ad libitum access to a normal chow diet and a high-fat diet, respectively. The restrictive high-fat diet (RFAT) group, restrictive high-sugar diet (RSUG) group, and high-protein diet (PRO) group were fed a high-fat diet, a high-sugar diet, and a high-protein diet, respectively, in an isocaloric way. All rats were killed at 12 wk. Body weight, visceral fat index (visceral fat/body weight), liver index (liver/body weight), insulin resistance, portal lipopolysaccharide (LPS), serum alanine aminotransferase (ALT), serum aspartate aminotransferase (AST), and liver triglycerides were measured. The intestinal microbiota in the different groups of rats was sequenced using high-throughput sequencing technology. RESULTS The FFAT group had higher body weight, visceral fat index, liver index, peripheral insulin resistance, portal LPS, serum ALT, serum AST, and liver triglycerides compared with all other groups (P < 0.05). Taking the same calories, the RFAT and RSUG groups demonstrated increased body weight, visceral fat index, peripheral insulin resistance and liver triglycerides compared with the PRO group (P < 0.05). The RFAT group also showed increased portal LPS compared with the PRO group (P < 0.05). Unweighted UniFrac principal coordinates analysis of the sequencing data revealed that the intestinal microbiota structures of the CON, FFAT, RSUG and PRO groups were roughly separated away from each other. Taxon-based analysis showed that, compared with the CON group, the FFAT group had an increased abundance of Firmicutes, Roseburia and Oscillospira bacteria, a higher ratio of Firmicutes to Bacteroidetes, and a decreased abundance of Bacteroidetes, Bacteroides and Parabacteroides bacteria (P < 0.05). The RFAT group showed an increased abundance of Firmicutes and decreased abundance of Parabacteroides bacteria (P < 0.05). The RSUG group showed an increased abundance of Bacteroidetes and Sutterella bacteria, higher ratio of Bacteroidetes to Firmicutes, and a decreased abundance of Firmicutes (P < 0.05). The PRO group showed an increased abundance of Bacteroidetes, Prevotella, Oscillospira and Sutterella bacteria, and a decreased abundance of Firmicutes (P < 0.05). Compared with the FFAT group, the RFAT group had an increased abundance of Bacteroidetes, higher ratio of Bacteroidetes to Firmicutes, and decreased abundance of Firmicutes and Oscillospira bacteria (P < 0.05). CONCLUSION Compared with the high-protein diet, the NAFLD-inducing effects of high-fat and high-sugar diets are independent from calories, and may be associated with changed intestinal microbiota.
World Journal of Gastroenterology | 2013
Linlin Chen; Yi-You Zou; Fang-Gen Lu; Fujun Li; Guanghui Lian
AIM To determine the efficacy profiles of different concentrations of Lactobacillus acidophilus (L. acidophilus) for treating colitis using an experimental murine model. METHODS Colitis was established in 64 BALB/c mice by adding 5% dextran sodium sulfate (DSS) to the drinking water and allowing ad libitum access for 7 d. The mice were then randomly divided into the following control and experimental model groups (n = 8 each; day 0): untreated model control; negative-treatment model control (administered gavage of 1 mL/10 g normal saline); experimental-treatment models C4-C8 (administered gavage of 10(4), 10(5), 10(6), 10(7), or 10(8) CFU/10 g L. acidophilus, respectively); positive-treatment model control (administration of the anti-inflammatory agent prednisone acetate at 45 μg/10 g). Eight mice given regular water (no DSS) and no subsequent treatments served as the normal control group. Body weight, fecal traits, and presence of fecal occult blood were assessed daily. All animals were sacrificed on post-treatment day 7 to measure colonic length, perform histological scoring, and quantify the major bacteria in the proximal and distal colon. Intergroup differences were determined by one-way ANOVA and post-hoc Student-Newman-Keuls comparison. RESULTS All treatments (L. acidophilus and prednisone acetate) protected against colitis-induced weight loss (P < 0.05 vs model and normal control groups). The extent of colitis-induced colonic shortening was significantly reduced by all treatments (prednisone acetate > C4 > C5 > C7 > C8 > C6; P < 0.05 vs untreated model group), and the C6 group showed colonic length similar to that of the normal control group (P > 0.05). The C6 group also had the lowest disease activity index scores among the model groups. The bacterial profiles in the proximal colon were similar between all of the experimental-treatment model groups (all P > 0.05). In contrast, the bacterial profile in the distal colon of the C6 group showed the distinctive features (P < 0.05 vs all other experimental-treatment model groups) of Lactobacillus sp. and Bifidobacterium sp. being the most abundant bacteria and Staphylococcus aureus being the least abundant bacteria. CONCLUSION The most therapeutically efficacious concentration of L. acidophilus (10(6) CFU/10 g) may exert its effects by modulating the bacterial profile in the distal colon.
PLOS ONE | 2016
Yi Cui; Hongyun Wei; Fang-Gen Lu; Xiao-Wei Liu; Deliang Liu; Li Gu; Chunhui Ouyang
Aim To analyze the changes of different Lactobacillus species in ulcerative colitis patients and to further assess the therapeutic effects of selected Lactobacillus strains on dextran sulfate sodium (DSS)-induced experimental colitis in BALB/c mice. Methods Forty-five active ulcerative colitis (UC) patients and 45 population-based healthy controls were enrolled. Polymerase chain reaction (PCR) amplification and real-time PCR were performed for qualitative and quantitative analyses, respectively, of the Lactobacillus species in UC patients. Three Lactobacillus strains from three species were selected to assess the therapeutic effects on experimental colitis. Sixty 8-week-old BALB/c mice were divided into six groups. The five groups that had received DSS were administered normal saline, mesalazine, L. fermentum CCTCC M206110 strain, L. crispatus CCTCC M206119 strain, or L. plantarum NCIMB8826 strain. We assessed the severity of colitis based on disease activity index (DAI), body weight loss, colon length, and histologic damage. Results The detection rate of four of the 11 Lactobacillus species decreased significantly (P < 0.05), and the detection rate of two of the 11 Lactobacillus species increased significantly (P < 0.05) in UC patients. Relative quantitative analysis revealed that eight Lactobacillus species declined significantly in UC patients (P < 0.05), while three Lactobacillus species increased significantly (P < 0.05). The CCTCC M206110 treatment group had less weight loss and colon length shortening, lower DAI scores, and lower histologic scores (P < 0.05), while the CCTCC M206119 treatment group had greater weight loss and colon length shortening, higher histologic scores, and more severe inflammatory infiltration (P < 0.05). NCIMB8826 improved weight loss and colon length shortening (P < 0.05) with no significant influence on DAI and histologic damage in the colitis model. Conclusions Administration of an L. crispatus CCTCC M206119 supplement aggravated DSS-induced colitis. L. fermentum CCTCC M206110 proved to be effective at attenuating DSS-induced colitis. The potential probiotic effect of L. plantarum NCIMB8826 on UC has yet to be assessed.
World Journal of Gastroenterology | 2011
Xin Zhao; Xiao-Wei Liu; Ning Xie; Xue-Hong Wang; Yi Cui; Junwen Yang; Linlin Chen; Fang-Gen Lu
AIM To analyze the microbiota shift in the distal esophagus of Sprague-Dawley rats fed a high-fat diet. METHODS Twenty Sprague-Dawley rats were divided into high-fat diet and normal control groups of 10 rats each. The composition of microbiota in the mucosa from the distal esophagus was analyzed based on selective culture. A variety of Lactobacillus species were identified by molecular biological techniques. Bacterial DNA from Lactobacillus colonies was extracted, and 16S rDNA was amplified by PCR using bacterial universal primers. The amplified 16S rDNA products were separated by denaturing gradient gel electrophoresis (DGGE). Every single band was purified from the gel and sent to be sequenced. RESULTS Based on mucosal bacterial culturing in the distal esophagus, Staphylococcus aureus was absent, and total anaerobes and Lactobacillus species were decreased significantly in the high-fat diet group compared with the normal control group (P < 0.01). Detailed DGGE analysis on the composition of Lactobacillus species in the distal esophagus revealed that Lactobacillus crispatus, Lactobacillus gasseri (L. gasseri) and Lactobacillus reuteri (L. reuteri) comprised the Lactobacillus species in the high-fat diet group, while the composition of Lactobacillus species in the normal control group consisted of L. gasseri, Lactobacillus jensenii and L. reuteri. CONCLUSION High-fat diet led to a mucosal microflora shift in the distal esophagus in rats, especially the composition of Lactobacillus species.
Digestive Diseases and Sciences | 2013
Fujun Li; Yi-You Zou; Yi Cui; Ya-Ni Yin; George Guo; Fang-Gen Lu
BackgroundAssessment of the severity and extent of disease activity continues to present challenges for physicians in the treatment of ulcerative colitis. Standard markers that can objectively reflect disease activity are useful for physicians to both evaluate the course of ulcerative colitis and monitor the effectiveness of therapy for any given patient.AimsWe hypothesize that calcitonin gene-related peptide (CGRP) can reflect the activity and severity of ulcerative colitis and be used as a marker to assess the effectiveness of various therapies.MethodsWe examined the expression levels of CGRP by reverse transcription polymerase chain reaction (RT-PCR) and semi-quantitative immunohistochemisty in mucosal biopsies from 38 patients with UC and 18 controls. Levels of CGRP mRNA and protein expression were compared between patients and controls with the clinical activity index (CAI) and the endoscopic activity index (EAI) for various levels of UC severity.ResultsOur results showed that the levels of CGRP mRNA and protein expression were significantly reduced in UC patients compared to controls. This effect was more pronounced in patients with more severe cases of UC. There is a statistically significant negative correlation between levels of CGRP mRNA expression and CAI/EAI scores. A statistically significant negative correlation was also found between levels of CGRP protein expression and CAI/EAI scores. Overall, high CAI and EAI scores were accompanied by low CGRP mRNA and protein expression levels.ConclusionLevels of CGRP protein and mRNA expression in the colonic mucosa of patients are closely associated with UC severity and corroborate traditional indices used to assess the disease.
Molecular Medicine Reports | 2011
Darong Yang; Junwen Yang; Fang-Gen Lu; Cuilin Li; Liang J
The aim of this study was to confirm the localization of recombinant pGPC3+afp-EGFP which expressed a new re-anchored protein named GPC3+afp-EGFP on the cytoplasmic membrane and to investigate its functions against hepatocellular carcinoma (HCC). EGFP expression in transfected HepG2 cells was observed using fluorescence and a confocal microscope. pGPC3+afp-EGFP expression was detected in membranous and soluble proteins extracted from transfected human embryonic kidney 293 cells by Western blot analysis using GPC3 mAb. The proliferation of transfected HepG2 cells with pGPC3+afp-EGFP (experimental group) was detected using SRB assay and compared to those of transfected HepG2 cells with pGPC3 (control group) and non-transfected HepG2 cells (blank group). Quantitative analysis of mRNA expression of the Fas gene was conducted by real-time PCR using the β-actin housekeeping gene as the internal control at variable times. Apoptotic HepG2 cells in the three groups were counted and statistically analyzed by a contingency table Chi-square test using Spss 11.5 software and TUNEL assay. Production of both TNF-α and IFN-γ/IL2 was detected by ELISPOT after co-cultivation of transfected HepG2 cells with peripheral blood lymphocytes at different time-points in the experimental group. Green fluorescence was mainly found around the transfected HepG2 cell periphery through fluorescence and confocal microscopy. GPC3+afp-EGFP could not be detected in soluble protein but only in membranous protein. Proliferation curves showed that the proliferative quantities of transfected HepG2 cells in the experimental group decreased, whereas the mRNA expression of the Fas gene increased significantly compared to those of the other two groups. The numbers of apoptotic cells in the experimental group were significantly higher compared to those in the other two groups, as shown by statistical analysis. Both TNF-α and IFN-γ/IL2 were induced and were much higher in the experimental groups than in the diverse control groups at variable times. A new re-anchored protein GPC3+afp-EGFP expressed by recombinant pGPC3+afp-EGFP was localized on the cytoplasmic membrane, and had multiple functions against HCC, such as inhibition of transfected HepG2 cell proliferation, promotion of transfected HepG2 apoptosis and induction of antitumor cytokine excretion.