Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fang-Hua Lee is active.

Publication


Featured researches published by Fang-Hua Lee.


Journal of Virology | 2007

Dissecting the Neutralizing Antibody Specificities of Broadly Neutralizing Sera from Human Immunodeficiency Virus Type 1-Infected Donors

Amandeep K. Dhillon; T. Helen Donners; Ralph Pantophlet; Welkin E. Johnson; Julie M. Decker; George M. Shaw; Fang-Hua Lee; Douglas D. Richman; Robert W. Doms; Guido Vanham; Dennis R. Burton

ABSTRACT Attempts to elicit broadly neutralizing antibody responses by human immunodeficiency virus type 1 (HIV-1) vaccine antigens have been met with limited success. To better understand the requirements for cross-neutralization of HIV-1, we have characterized the neutralizing antibody specificities present in the sera of three asymptomatic individuals exhibiting broad neutralization. Two individuals were infected with clade B viruses and the third with a clade A virus. The broadly neutralizing activity could be exclusively assigned to the protein A-reactive immunoglobulin G (IgG) fraction of all three donor sera. Neutralization inhibition assays performed with a panel of linear peptides corresponding to the third hypervariable (V3) loop of gp120 failed to inhibit serum neutralization of a panel of HIV-1 viruses. The sera also failed to neutralize chimeric simian immunodeficiency virus (SIV) and HIV-2 viruses displaying highly conserved gp41-neutralizing epitopes, suggesting that antibodies directed against these epitopes likely do not account for the broad neutralizing activity observed. Polyclonal IgG was fractionated on recombinant monomeric clade B gp120, and the neutralization capacities of the gp120-depleted samples were compared to that of the original polyclonal IgG. We found that the gp120-binding antibody population mediated neutralization of some isolates, but not all. Overall, the data suggest that broad neutralization results from more than one specificity in the sera but that the number of these specificities is likely small. The most likely epitope recognized by the monomeric gp120 binding neutralizing fraction is the CD4 binding site, although other epitopes, such as the glycan shield, cannot be excluded.


Journal of Virology | 2005

Enfuvirtide Resistance Mutations: Impact on Human Immunodeficiency Virus Envelope Function, Entry Inhibitor Sensitivity, and Virus Neutralization

Jacqueline D. Reeves; Fang-Hua Lee; John L. Miamidian; Cassandra B. Jabara; Marisa M. Juntilla; Robert W. Doms

ABSTRACT Enfuvirtide (ENF/T-20/Fuzeon), the first human immunodeficiency virus (HIV) entry inhibitor to be licensed, targets a structural intermediate of the entry process. ENF binds the HR1 domain in gp41 after Env has bound CD4, preventing conformational changes needed for membrane fusion. Mutations in HR1 that confer ENF resistance can arise following ENF therapy. ENF resistance mutations were introduced into an R5- and X4-tropic Env to examine their impact on fusion, infection, and sensitivity to different classes of entry inhibitors and neutralizing antibodies. HR1 mutations could reduce infection and fusion efficiency and also delay fusion kinetics, likely accounting for their negative impact on viral fitness. HR1 mutations had minimal effect on virus sensitivity to other classes of entry inhibitors, including those targeting CD4 binding (BMS-806 and a CD4-specific monoclonal antibody [MAb]), coreceptor binding (CXCR4 inhibitor AMD3100 and CCR5 inhibitor TAK-779), or fusion (T-1249), indicating that ENF-resistant viruses can remain sensitive to other entry inhibitors in vivo. Some HR1 mutations conferred increased sensitivity to a subset of neutralizing MAbs that likely target fusion intermediates or with epitopes preferentially exposed following receptor interactions (17b, 48D, 2F5, 4E10, and IgGb12), as well as sera from some HIV-positive individuals. Mechanistically, enhanced neutralization correlated with reduced fusion kinetics, indicating that, in addition to steric constraints, kinetics may also limit virus neutralization by some antibodies. Therefore, escape from ENF comes at a cost to viral fitness and may confer enhanced sensitivity to humoral immunity due to prolonged exposure of epitopes that are not readily accessible in the native Env trimer. Resistance to other entry inhibitors was not observed.


Journal of Virology | 2004

Impact of Mutations in the Coreceptor Binding Site on Human Immunodeficiency Virus Type 1 Fusion, Infection, and Entry Inhibitor Sensitivity

Jacqueline D. Reeves; John L. Miamidian; Mark J. Biscone; Fang-Hua Lee; Navid Ahmad; Theodore C. Pierson; Robert W. Doms

ABSTRACT An increasingly large number of antiviral agents that prevent entry of human immunodeficiency virus (HIV) into cells are in preclinical and clinical development. The envelope (Env) protein of HIV is the major viral determinant that affects sensitivity to these compounds. To understand how changes in Env can impact entry inhibitor sensitivity, we introduced six mutations into the conserved coreceptor binding site of the R5 HIV-1 strain YU-2 and measured the effect of these changes on CD4 and coreceptor binding, membrane fusion levels and rates, virus infection, and sensitivity to the fusion inhibitors enfuvirtide (T-20) and T-1249, the CCR5 inhibitor TAK-779, and an antibody to CD4. The mutations had little effect on CD4 binding but reduced CCR5 binding to various extents. In general, reductions in coreceptor binding efficiency resulted in slower fusion kinetics and increased sensitivity to TAK-779 and enfuvirtide. In addition, low CCR5 binding usually reduced overall fusion and infection levels. However, one mutation adjacent to the bridging sheet β21 strand, P438A, had little effect on fusion activity, fusion rate, infectivity, or sensitivity to enfuvirtide or T-1249 despite causing a marked reduction in CCR5 binding and a significant increase in TAK-779 sensitivity. Thus, our findings indicate that changes in the coreceptor binding site of Env can modulate its fusion activity, infectivity, and entry inhibitor sensitivity by multiple mechanisms and suggest that reductions in coreceptor binding do not always result in prolonged fusion kinetics and increased sensitivity to enfuvirtide.


Journal of Virology | 2013

Transmitted/Founder and Chronic HIV-1 Envelope Proteins Are Distinguished by Differential Utilization of CCR5

Zahra F. Parker; Shilpa S. Iyer; Craig B. Wilen; Nicholas F. Parrish; Kelechi Chikere; Fang-Hua Lee; Chukwuka A. Didigu; Reem Berro; Per Johan Klasse; Benhur Lee; John P. Moore; George M. Shaw; Beatrice H. Hahn; Robert W. Doms

ABSTRACT Infection by HIV-1 most often results from the successful transmission and propagation of a single virus variant, termed the transmitted/founder (T/F) virus. Here, we compared the attachment and entry properties of envelope (Env) glycoproteins from T/F and chronic control (CC) viruses. Using a panel of 40 T/F and 47 CC Envs, all derived by single genome amplification, we found that 52% of clade C and B CC Envs exhibited partial resistance to the CCR5 antagonist maraviroc (MVC) on cells expressing high levels of CCR5, while only 15% of T/F Envs exhibited this same property. Moreover, subtle differences in the magnitude with which MVC inhibited infection on cells expressing low levels of CCR5, including primary CD4+ T cells, were highly predictive of MVC resistance when CCR5 expression levels were high. These results are consistent with previous observations showing a greater sensitivity of T/F Envs to MVC inhibition on cells expressing very high levels of CCR5 and indicate that CC Envs are often capable of recognizing MVC-bound CCR5, albeit inefficiently on cells expressing physiologic levels of CCR5. When CCR5 expression levels are high, this phenotype becomes readily detectable. The utilization of drug-bound CCR5 conformations by many CC Envs was seen with other CCR5 antagonists, with replication-competent viruses, and did not obviously correlate with other phenotypic traits. The striking ability of clade C and B CC Envs to use MVC-bound CCR5 relative to T/F Envs argues that the more promiscuous use of CCR5 by these Env proteins is selected against at the level of virus transmission and is selected for during chronic infection.


Journal of Virology | 2008

An Engineered Saccharomyces cerevisiae Strain Binds the Broadly Neutralizing Human Immunodeficiency Virus Type 1 Antibody 2G12 and Elicits Mannose-Specific gp120-Binding Antibodies

Robert J. Luallen; Jianqiao Lin; Hu Fu; Karen K. Cai; Caroline Agrawal; Innocent Mboudjeka; Fang-Hua Lee; David C. Montefiori; David F. Smith; Robert W. Doms; Yu Geng

ABSTRACT The glycan shield of the human immunodeficiency virus type 1 (HIV-1) envelope (Env) protein serves as a barrier to antibody-mediated neutralization and plays a critical role in transmission and infection. One of the few broadly neutralizing HIV-1 antibodies, 2G12, binds to a carbohydrate epitope consisting of an array of high-mannose glycans exposed on the surface of the gp120 subunit of the Env protein. To produce proteins with exclusively high-mannose carbohydrates, we generated a mutant strain of Saccharomyces cerevisiae by deleting three genes in the N-glycosylation pathway, Och1, Mnn1, and Mnn4. Glycan profiling revealed that N-glycans produced by this mutant were almost exclusively Man8GlcNAc2, and four endogenous glycoproteins that were efficiently recognized by the 2G12 antibody were identified. These yeast proteins, like HIV-1 gp120, contain a large number and high density of N-linked glycans, with glycosidase digestion abrogating 2G12 cross-reactivity. Immunization of rabbits with whole Δoch1 Δmnn1 Δmnn4 yeast cells produced sera that recognized a broad range of HIV-1 and simian immunodeficiency virus (SIV) Env glycoproteins, despite no HIV/SIV-related proteins being used in the immunization procedure. Analyses of one of these sera on a glycan array showed strong binding to glycans with terminal Manα1,2Man residues, and binding to gp120 was abrogated by glycosidase removal of high-mannose glycans and terminal Manα1,2Man residues, similar to 2G12. Since S. cerevisiae is genetically pliable and can be grown easily and inexpensively, it will be possible to produce new immunogens that recapitulate the 2G12 epitope and may make the glycan shield of HIV Env a practical target for vaccine development.


PLOS Pathogens | 2014

The major cellular sterol regulatory pathway is required for Andes virus infection.

Josiah Petersen; Mary Jane Drake; Emily Bruce; Amber M. Riblett; Chukwuka A. Didigu; Craig B. Wilen; Nirav Malani; Frances Male; Fang-Hua Lee; Frederic D. Bushman; Sara Cherry; Robert W. Doms; Paul Bates; Kenneth Briley

The Bunyaviridae comprise a large family of RNA viruses with worldwide distribution and includes the pathogenic New World hantavirus, Andes virus (ANDV). Host factors needed for hantavirus entry remain largely enigmatic and therapeutics are unavailable. To identify cellular requirements for ANDV infection, we performed two parallel genetic screens. Analysis of a large library of insertionally mutagenized human haploid cells and a siRNA genomic screen converged on components (SREBP-2, SCAP, S1P and S2P) of the sterol regulatory pathway as critically important for infection by ANDV. The significance of this pathway was confirmed using functionally deficient cells, TALEN-mediated gene disruption, RNA interference and pharmacologic inhibition. Disruption of sterol regulatory complex function impaired ANDV internalization without affecting virus binding. Pharmacologic manipulation of cholesterol levels demonstrated that ANDV entry is sensitive to changes in cellular cholesterol and raises the possibility that clinically approved regulators of sterol synthesis may prove useful for combating ANDV infection.


Journal of Virology | 2011

Yeast-Elicited Cross-Reactive Antibodies to HIV Env Glycans Efficiently Neutralize Virions Expressing Exclusively High-Mannose N-Linked Glycans

Caroline Agrawal-Gamse; Robert J. Luallen; Bingfen Liu; Hu Fu; Fang-Hua Lee; Yu Geng; Robert W. Doms

ABSTRACT The HIV envelope (Env) protein uses a dense coat of glycans to mask conserved domains and evade host humoral immune responses. The broadly neutralizing antibody 2G12, which binds a specific cluster of high-mannose glycans on HIV Env, shows that the glycan shield can also serve as a target for neutralizing antibodies. We have described a triple mutant Saccharomyces cerevisiae strain that expresses high-mannose glycoproteins that bind to 2G12. When used to immunize rabbits, this yeast elicits antibodies that bind to gp120-associated glycans but fail to neutralize virus. Here we sought to determine the reason for these discordant results. Affinity purification of sera over columns conjugated with three 2G12-reactive yeast glycoproteins showed that these proteins could adsorb 80% of the antibodies that bind to gp120 glycans. Despite binding to monomeric gp120, these mannose-specific antibodies failed to bind cell surface-expressed trimeric Env. However, when Env was expressed in the presence of the mannosidase inhibitor kifunensine to force retention of high-mannose glycans at all sites, the purified antibodies gained the abilities to bind trimeric Env and to strongly and broadly neutralize viruses produced under these conditions. Combined, these data show that the triple mutant yeast strain elicits antibodies that bind to high-mannose glycans presented on the HIV envelope, but only when they are displayed in a manner not found on native Env trimers. This implies that the underlying structure of the protein scaffold used to present the high-mannose glycans may be critical to allow elicitation of antibodies that recognize trimeric Env and neutralize virus.


Journal of Virology | 2009

A Yeast Glycoprotein Shows High-Affinity Binding to the Broadly Neutralizing Human Immunodeficiency Virus Antibody 2G12 and Inhibits gp120 Interactions with 2G12 and DC-SIGN

Robert J. Luallen; Hu Fu; Caroline Agrawal-Gamse; Innocent Mboudjeka; Wei Huang; Fang-Hua Lee; Lai-Xi Wang; Robert W. Doms; Yu Geng

ABSTRACT The human immunodeficiency virus type 1 (HIV-1) envelope (Env) protein contains numerous N-linked carbohydrates that shield conserved peptide epitopes and promote trans infection by dendritic cells via binding to cell surface lectins. The potent and broadly neutralizing monoclonal antibody 2G12 binds a cluster of high-mannose-type oligosaccharides on the gp120 subunit of Env, revealing a conserved and highly exposed epitope on the glycan shield. To find an effective antigen for eliciting 2G12-like antibodies, we searched for endogenous yeast proteins that could bind to 2G12 in a panel of Saccharomyces cerevisiae glycosylation knockouts and discovered one protein that bound weakly in a Δpmr1 strain deficient in hyperglycosylation. 2G12 binding to this protein, identified as Pst1, was enhanced by adding the Δmnn1 deletion to the Δpmr1 background, ensuring the exposure of terminal α1,2-linked mannose residues on the D1 and D3 arms of high-mannose glycans. However, optimum 2G12 antigenicity was found when Pst1, a heavily N-glycosylated protein, was expressed with homogenous Man8GlcNAc2 structures in Δoch1 Δmnn1 Δmnn4 yeast. Surface plasmon resonance analysis of this form of Pst1 showed high affinity for 2G12, which translated into Pst1 efficiently inhibiting gp120 interactions with 2G12 and DC-SIGN and blocking 2G12-mediated neutralization of HIV-1 pseudoviruses. The high affinity of the yeast glycoprotein Pst1 for 2G12 highlights its potential as a novel antigen to induce 2G12-like antibodies.


AIDS Research and Human Retroviruses | 2008

Focused Dampening of Antibody Response to the Immunodominant Variable Loops by Engineered Soluble gp140

Suganya Selvarajah; Bridget A. Puffer; Fang-Hua Lee; Ping Zhu; Yuxing Li; Richard T. Wyatt; Kenneth H. Roux; Robert W. Doms; Dennis R. Burton

Immunization studies with modified gp120 monomers using a hyperglycosylation strategy, in which undesired epitopes are masked by the selective incorporation of N-linked glycans, were described in a previous paper (Selvarajah S, et al., J Virol 2000;79:12148-12163). In this report, we applied the hyperglycosylation strategy to soluble uncleaved gp140 trimers to improve the antigenic and immunogenic profile in the context of a trimeric conformation of the immunogen. The JR-FL gp140 gene was added upstream of a soluble trimerization domain of chicken cartilage matrix (CART) protein and expressed predominantly as a trimer and called gp140-CART wild-type. In the hyperglycosylated gp140-CART mCHO(V) mutant, four extra sugar attachment motifs on the variable loops helped mask epitope recognition by monoclonal antibodies specific to the variable loops. The gp140-CART mCHO(V) mutant and gp140-CART wild-type soluble trimer protein were used to immunize rabbits. The gp140-CART mCHO(V) immune sera had reduced antibody response to the variable loops compared to gp140-CART wild-type immune sera as shown by peptide reactivity, competition assays, and the reduced ability of sera to neutralize SF162 virus (a variable loop neutralization-sensitive virus). The antibody response to the CD4 binding site was retained in the gp140-CART mCHO(V) mutant immune sera similar to gp140-CART wild-type immune sera. The results demonstrate that the strategy of hyperglycosylation is clearly useful in the context of a compact form of Env immunogen such as the soluble gp140 trimer in dampening responses to variable loops while maintaining responses to an important epitope, the CD4 binding site. However, the results also show that in order to elicit broadly neutralizing antibodies that target conserved epitopes, the soluble gp140 trimer immunogen template will require further modifications.


Journal of Virology | 2009

Adaptive Mutations in a Human Immunodeficiency Virus Type 1 Envelope Protein with a Truncated V3 Loop Restore Function by Improving Interactions with CD4

Caroline Agrawal-Gamse; Fang-Hua Lee; Beth Haggarty; Andrea P. O. Jordan; Yanjie Yi; Benhur Lee; Ronald G. Collman; James A. Hoxie; Robert W. Doms; Meg M. Laakso

ABSTRACT We previously reported that a human immunodeficiency virus type 1 (HIV-1) clade B envelope protein with a severely truncated V3 loop regained function after passage in tissue culture. The adapted virus, termed TA1, retained the V3 truncation, was exquisitely sensitive to neutralization by the CD4 binding site monoclonal antibody b12 and by HIV-positive human sera, used CCR5 to enter cells, and was completely resistant to small molecule CCR5 antagonists. To examine the mechanistic basis for these properties, we singly and in combination introduced each of the 5 mutations from the adapted clone TA1 into the unadapted envelope. We found that single amino acid changes in the C3 region, the V3 loop, and in the fusion peptide were responsible for imparting near-normal levels of envelope function to TA1. T342A, which resulted in the loss of a highly conserved glycosylation site in C3, played the primary role. The adaptive amino acid changes had no impact on CCR5 antagonist resistance but made virus more sensitive to neutralization by antibodies to the CD4 binding site, modestly enhanced affinity for CD4, and made TA1 more responsive to CD4 binding. Specifically, TA1 was triggered by soluble CD4 more readily than the parental Env and, unlike the parental Env, could mediate entry on cells that express low levels of CD4. In contrast, TA1 interacted with CCR5 less efficiently and was highly sensitive to antibodies that bind to the CCR5 N terminus and ECL2. Therefore, enhanced utilization of CD4 is one mechanism by which HIV-1 can overcome mutations in the V3 region that negatively affect CCR5 interactions.

Collaboration


Dive into the Fang-Hua Lee's collaboration.

Top Co-Authors

Avatar

Robert W. Doms

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Benhur Lee

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Craig B. Wilen

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

George M. Shaw

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John L. Miamidian

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Amber M. Riblett

University of Pennsylvania

View shared research outputs
Top Co-Authors

Avatar

Beatrice H. Hahn

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge